Optimality Implies Kernel Sum Classifiers are Statistically Efficient

Introduction and Optimization

Background

Statistical Learning Theory + Optimization

- Generalization proofs typically state that <u>all feasible estimators</u> generalize well
- This includes low-accuracy estimators we do not care about
- Proofs often make stringent assumptions on the data distribution
- We combine Optimization and Statistical Learning Theory to prove that optimal estimators generalize well
- We justify common assumptions made in the Multiple Kernel Learning literature

Multiple Kernel Learning

- Given m kernels k_1, \ldots, k_m and dataset $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$
- An estimator picks $\theta_1, \ldots, \theta_m$ and $\boldsymbol{\alpha}$
- Define combined kernel $k_{\Sigma}(\cdot, \cdot) = \sum_{t=1}^{m} \theta_t k_t(\cdot, \cdot)$
- Predict with $y(\mathbf{x}|\tilde{\mathbf{K}}_{\Sigma}, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i k_{\Sigma}(\mathbf{x}, \mathbf{x}_i)$

Our Approach

- Binary Classification: $y_i \in \{-1, +1\}$
- α is optimal in a Support Vector Machine
- Control generalization error of k_{Σ} with the error of k_1, \ldots, k_m

Optimization-Based Results

Lemma of One Kernel

Let lpha be the dual-optimal vector for labeled kernel matrix $ilde{K}$. Then, by combining the Stationarity, Complementary Slackness, and Dual Feasibility KKT conditions, we find that

$$\| \boldsymbol{\alpha} \|_1 = \boldsymbol{\alpha}^{\mathsf{T}} \tilde{\boldsymbol{K}} \boldsymbol{\alpha}$$

Theorem of Two Kernels: Adding Kernels Reduces Complexity

Let $mlpha_1$ and $mlpha_2$ be the dual-optimal vectors for labeled kernel matrices $ilde K_1$ and $ilde K_2$. Let $lpha_{1+2}$ be the dual-optimal vector for labeled kernel matrix $ilde{K}_{1+2} \coloneqq ilde{K}_1 + ilde{K}_2$. Then, following from the prior lemma, the optimality of α_{1+2} , and some algebra, we have

$$\boldsymbol{\alpha}_{1+2}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{1+2} \boldsymbol{\alpha}_{1+2} \leq \frac{1}{3} (\boldsymbol{\alpha}_{1}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{1} \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{2} \boldsymbol{\alpha}_{2})$$

Theorem of Many Kernels: Adding Many Kernels Greatly Reduces Complexity

Let $\alpha_1, \ldots, \alpha_m$ be the dual-optimal vectors for labeled kernel matrices $\tilde{K}_1, \ldots, \tilde{K}_m$. Let α_{Σ} be the dual optimal vector for labeled kernel matrix $\tilde{K}_{\Sigma} := \sum_{t=1}^{m} \tilde{K}_{t}$. Then, by repeatedly applying the prior lemma, we find

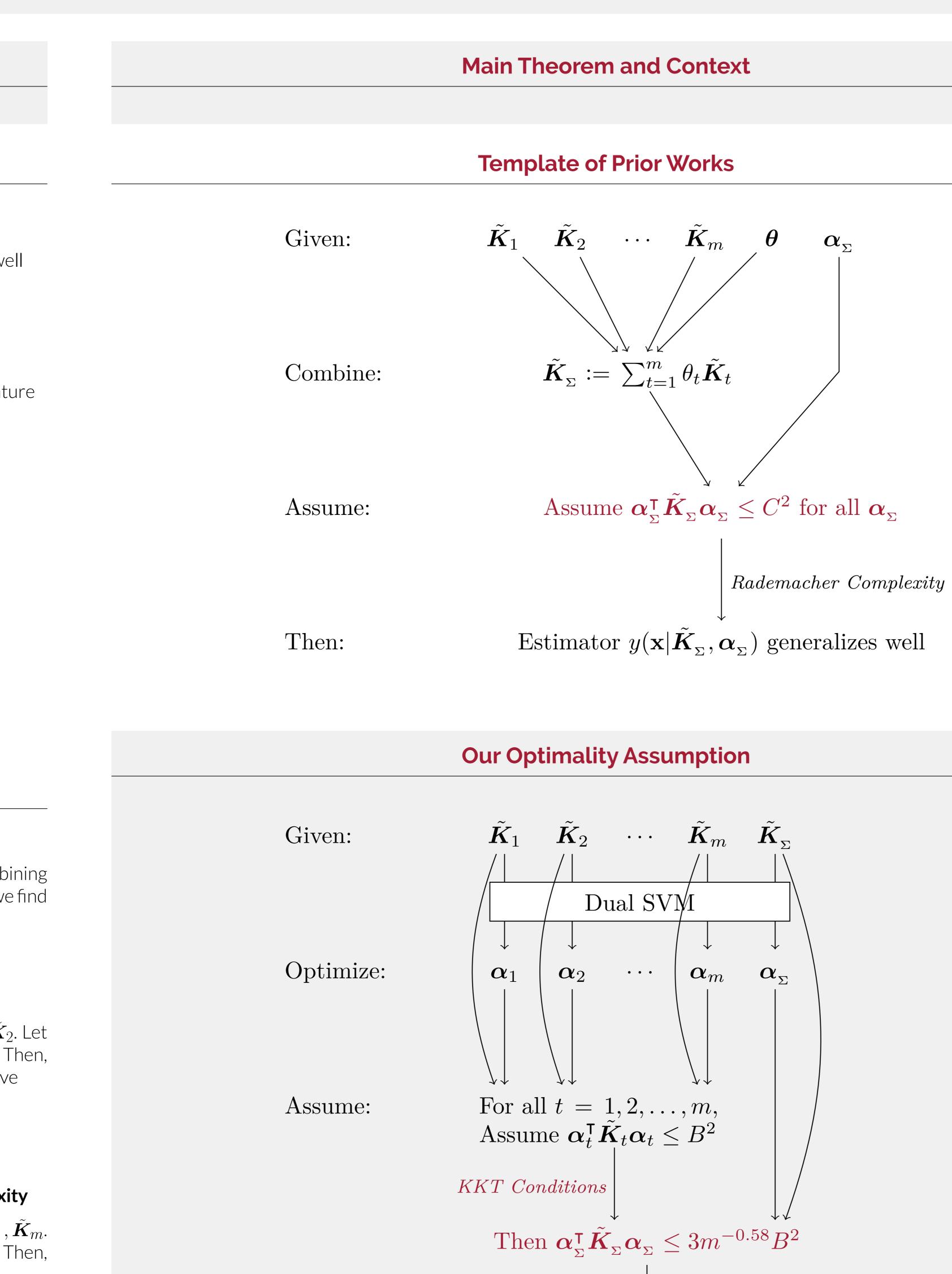
$$\boldsymbol{\alpha}_{\Sigma}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{\Sigma} \boldsymbol{\alpha}_{\Sigma} \leq 3m^{-\log_2(3)} \sum_{t=1}^m \boldsymbol{\alpha}_t^{\mathsf{T}} \tilde{\boldsymbol{K}}_t \boldsymbol{\alpha}_t$$

Furthermore, if we assume that $oldsymbol{lpha}_t^\intercal ilde{oldsymbol{K}}_t oldsymbol{lpha}_t \leq B^2$, then

$$\boldsymbol{\alpha}_{\Sigma}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{\Sigma} \boldsymbol{\alpha}_{\Sigma} \leq 3m^{-\log_2(3/2)} B^2$$

Raphael Arkady Meyer Jean Honorio

Computer Science Department, Purdue University



Then:

Rademacher Complexity

Estimator $y(\mathbf{x}|\tilde{K}_{\Sigma}, \boldsymbol{\alpha}_{\Sigma})$ generalizes well

Support Vector Machines Styles

 $\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \frac{C}{2} \|\boldsymbol{\xi}\|_{2}$ s.t. $y_i \mathbf{w}^\mathsf{T} \boldsymbol{\phi}(\mathbf{w}_i) \ge$ $\xi_i \ge 0 \ \forall i \in [n]$

(a) Primal SVM Problem

Figure 1. Primal and Dual SVM Problems. The L2 penalties are in gray.

Ways to Combine Kernels Together

$\mathcal{R}(.$

- **1**. Kernel Sums: If all $\theta_t = 1$, then
- 2. Kernel Subsets: If all $\theta_t \in \{0, 1\}$, then
- 3. Convex Combinations^{*}

Variable	Me
n	Nu
i,j	Ind
m	Nu
t	Ind
$ ilde{K}$	Lab
$oldsymbol{lpha}_t$	Du
B^2	Up
R^2	Up
	I

Conclusions

Learning Theory Results

• We consider the standard SVM and a L2-penalized SVM for nonseparable data:

$$\sum_{i=1}^{2} \| \hat{\xi}_{i} \|^{2} \leq 1 - \xi_{i} \quad \forall i \in [n]$$

 $\max_{\boldsymbol{\alpha},\boldsymbol{\xi}} \|\boldsymbol{\alpha}\|_1 - \frac{1}{2} \boldsymbol{\alpha}^\mathsf{T} \tilde{\boldsymbol{K}} \boldsymbol{\alpha} - \frac{1}{2} \|\boldsymbol{\xi}\|_2^2$ s.t. $0 \le \alpha_i \le C\xi_i \ \forall i \in [n]$

(b) Dual SVM Problem

• We prove statistical efficiency for standard SVM and $C = \frac{1}{2}$ in the L2-SVM

• Our core theorem complements existing Rademacher Complexity proofs • Generalization error is bounded by the Rademacher Complexity $\hat{\mathcal{R}}(\mathcal{F})$:

$$\mathcal{F}) := \mathop{\mathbb{E}}_{\sigma \sim \{\pm 1\}^n} \left[\sup_{h \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n \sigma_i h(\mathbf{x}_i) \right) \right]$$

• Different proofs consider different ways to combine kernels:

$$\hat{\mathcal{R}}(\mathcal{F}) = O\left(\frac{BRm^{0.208}}{\sqrt{n}}\right)$$

$$\hat{\mathcal{R}}(\mathcal{F}) = O\left(\frac{BRm^{0.208} \cdot \sqrt{\ln(m)}}{\sqrt{n}}\right)$$

*: If we have $\theta_t \in \{0\} \cup \left[\frac{10}{m}, 1\right]$ and $\sum_{t=1}^m \theta_t = 1$, then
$$\hat{\mathcal{R}}(\mathcal{F}) = O\left(\frac{BRm\sqrt{\ln(m)}}{\sqrt{n}}\right)$$

Table of Constants

eaning

umber of Samples

dex of a Sample

umber of Kernels

dex of a Kernel

beled Kernel Matrix (i.e. $[ilde{m{K}}]_{i,j} \coloneqq y_i y_j k(\mathbf{x}_i,\mathbf{x}_j))$

ual Solution Vector for SVM with $ilde{m{K}}_t$.

oper Bound for all $oldsymbol{lpha}_t^\intercal ilde K_t oldsymbol{lpha}_t$.

oper Bound for all $k_t(\mathbf{x}_i, \mathbf{x}_i) = \| \boldsymbol{\phi}(\mathbf{x}_i) \|_2^2$