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Introduction and Optimization

Background

Sta s cal Learning Theory + Op miza on

Generalization proofs typically state that all feasible estimators generalize well

This includes low-accuracy estimators we do not care about

Proofs oftenmake stringent assumptions on the data distribution

We combineOptimization and Statistical Learning Theory to prove that

optimal estimators generalize well

We justify common assumptions made in theMultiple Kernel Learning literature

Mul ple Kernel Learning

Givenm kernels k1, . . . , km and dataset (x1, y1), . . . , (xn, yn)
An estimator picks θ1, . . . , θm andα

Define combined kernel kΣ(·, ·) =
∑m

t=1 θtkt(·, ·)
Predict with y(x|K̃Σ,α) =

∑n
i=1 αikΣ(x, xi)

Our Approach

Binary Classification: yi ∈ {−1, +1}
α is optimal in a Support VectorMachine

Control generalization error of kΣ with the error of k1, . . . , km

Optimization-Based Results

Lemma of One Kernel

Let α be the dual-optimal vector for labeled kernel matrix K̃ . Then, by combining

the Stationarity,Complementary Slackness, andDual FeasibilityKKTconditions, we find

that

‖α‖1 = αᵀK̃α

Theorem of Two Kernels: Adding Kernels Reduces Complexity

Letα1 andα2 be the dual-optimal vectors for labeled kernelmatrices K̃1 and K̃2. Let
α1+2 be the dual-optimal vector for labeled kernel matrix K̃1+2 := K̃1 + K̃2. Then,
following from the prior lemma, the optimality of α1+2, and some algebra, we have

α
ᵀ
1+2K̃1+2α1+2 ≤ 1

3
(αᵀ

1K̃1α1 + α
ᵀ
2K̃2α2)

Theorem of Many Kernels: Adding Many Kernels Greatly Reduces Complexity

Letα1, . . . ,αm be the dual-optimal vectors for labeled kernel matrices K̃1, . . . , K̃m.

Let αΣ be the dual optimal vector for labeled kernel matrix K̃Σ :=
∑m

t=1 K̃t. Then,

by repeatedly applying the prior lemma, we find

αᵀ
ΣK̃ΣαΣ ≤ 3m− log2(3)

m∑
t=1

α
ᵀ
t K̃tαt

Furthermore, if we assume thatα
ᵀ
t K̃tαt ≤ B2, then

αᵀ
ΣK̃ΣαΣ ≤ 3m− log2(3/2)B2

Main Theorem and Context

Template of PriorWorks

Given: K̃1 K̃2 · · · K̃m θ α
Σ

Combine: K̃
Σ
:=

∑m
t=1 θtK̃t

Assume: Assume αᵀ
Σ
K̃

Σ
α

Σ
≤ C2 for all α

Σ

Then: Estimator y(x|K̃
Σ
,α

Σ
) generalizes well

Rademacher Complexity

Our Optimality Assumption

Given: K̃1 K̃2 · · · K̃m K̃
Σ

Optimize: α1 α2 · · · αm α
Σ

Dual SVM

Assume: For all t = 1, 2, . . . ,m,
Assume αᵀ

t K̃tαt ≤ B2

Then αᵀ
Σ
K̃

Σ
α

Σ
≤ 3m−0.58B2

KKT Conditions

Then: Estimator y(x|K̃
Σ
,α

Σ
) generalizes well

Rademacher Complexity

Conclusions

Learning Theory Results

Support Vector Machines Styles

We consider the standard SVM and a L2-penalized SVM for nonseparable data:

min
w

1
2
‖w‖2

2+
C

2
‖ξ‖2

2

s.t. yiwᵀφ(wi) ≥ 1−ξi ∀i ∈ [n]
ξi ≥ 0 ∀i ∈ [n]

(a) Primal SVMProblem

max
α,ξ

‖α‖1 − 1
2
αᵀK̃α−1

2
‖ξ‖2

2

s.t. 0 ≤ αi≤ Cξi ∀i ∈ [n]

(b) Dual SVMProblem

Figure 1. Primal and Dual SVMProblems. The L2 penalties are in gray.

We prove statistical efficiency for standard SVM andC = 1
2 in the L2-SVM

Ways to Combine Kernels Together

Our core theorem complements existing Rademacher Complexity proofs

Generalization error is bounded by the Rademacher Complexity R̂(F):

R̂(F) := E
σ∼{±1}n

 sup
h∈F

1
n

n∑
i=1

σih(xi)


Different proofs consider different ways to combine kernels:

1. Kernel Sums: If all θt = 1, then

R̂(F) = O

(
BRm0.208

√
n

)
2. Kernel Subsets: If all θt ∈ {0, 1}, then

R̂(F) = O

(
BRm0.208 ·

√
ln(m)√

n

)
3. Convex Combinations∗: If we have θt ∈ {0} ∪

[
10
m, 1

]
and

∑m
t=1 θt = 1, then

R̂(F) = O

(
BRm

√
ln(m)√

n

)

Table of Constants

Variable Meaning

n Number of Samples

i, j Index of a Sample

m Number of Kernels

t Index of a Kernel

K̃ Labeled Kernel Matrix (i.e. [K̃]i,j := yiyjk(xi, xj))
αt Dual Solution Vector for SVMwith K̃t

B2 Upper Bound for allα
ᵀ
t K̃tαt

R2 Upper Bound for all kt(xi, xi) = ‖φ(xi)‖2
2


