Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization

Paper by Agarwal et al. Presented by Raphael A. Meyer

NYU Tandon

- 1. Introduction & The Results
- 2. Information Theory
- 3. Stochastic Optimization

Introduction & The Results

Really common tool in the real world

- Really common tool in the real world
- Stochastic methods run faster than deterministic

- Really common tool in the real world
- Stochastic methods run faster than deterministic
- Theoretical results depends on the shape of the objective

- Really common tool in the real world
- Stochastic methods run faster than deterministic
- $\odot\,$ Theoretical results depends on the shape of the objective
 - Lipschitz

- Really common tool in the real world
- ◎ Stochastic methods run faster than deterministic
- Theoretical results depends on the shape of the objective
 - Lipschitz
 - Strong convexity

- Really common tool in the real world
- ◎ Stochastic methods run faster than deterministic
- Theoretical results depends on the shape of the objective
 - Lipschitz
 - Strong convexity
 - Strongly smooth

- Really common tool in the real world
- Stochastic methods run faster than deterministic
- Theoretical results depends on the shape of the objective
 - Lipschitz
 - Strong convexity
 - Strongly smooth
- Are our algorithms optimal for these settings?

- Really common tool in the real world
- Stochastic methods run faster than deterministic
- Theoretical results depends on the shape of the objective
 - Lipschitz
 - Strong convexity
 - Strongly smooth
- Are our algorithms optimal for these settings?
 - Yes. They are.

- Really common tool in the real world
- Stochastic methods run faster than deterministic
- Theoretical results depends on the shape of the objective
 - Lipschitz
 - Strong convexity
 - Strongly smooth
- O Are our algorithms optimal for these settings?
 - Yes. They are.
 - There exists a Lipschitz/Strong Convex objective function and stochastic gradient such that $O(\frac{1}{\sqrt{T}})/O(\frac{1}{T})$ iterations are required.

Stochastic First Order Optimization

Given:

• Ability to compute $g(\mathbf{x})$

Stochastic First Order Optimization

- Ability to compute $g(\mathbf{x})$
- \odot Ability to randomly estimate $\mathbf{z}(\mathbf{x}) pprox rac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$

Stochastic First Order Optimization

- Ability to compute $g(\mathbf{x})$
- \odot Ability to randomly estimate $\mathbf{z}(\mathbf{x}) pprox rac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$
- \odot Convex domain \mathbb{S}

Stochastic First Order Optimization

- Ability to compute $g(\mathbf{x})$
- \odot Ability to randomly estimate $\mathbf{z}(\mathbf{x}) pprox rac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$
- \odot Convex domain \mathbb{S}
- Maximum iterations T

Stochastic First Order Optimization

- Ability to compute $g(\mathbf{x})$
- \odot Ability to randomly estimate $\mathbf{z}(\mathbf{x}) pprox rac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$
- \odot Convex domain \mathbb{S}
- Maximum iterations T

Stochastic First Order Optimization

Given:

- Ability to compute $g(\mathbf{x})$
- \odot Ability to randomly estimate $\mathbf{z}(\mathbf{x}) pprox rac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$
- \odot Convex domain \mathbb{S}
- Maximum iterations T

Solve the problem:

 $\min_{\mathbf{x}\in\mathbb{S}}g(\mathbf{x})$

By computing $g(\mathbf{x})$ and $\mathbf{z}(\mathbf{x})$ at most T times

Stochastic First Order Optimization

Given:

- Ability to compute $g(\mathbf{x})$
- \odot Ability to randomly estimate $\mathbf{z}(\mathbf{x}) pprox rac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$
- \odot Convex domain \mathbb{S}
- Maximum iterations T

Solve the problem:

 $\min_{\mathbf{x}\in\mathbb{S}} g(\mathbf{x})$

By computing $g(\mathbf{x})$ and $\mathbf{z}(\mathbf{x})$ at most T times

 \odot This "access to $g(\mathbf{x}_i)$ and $\mathbf{z}(\mathbf{x}_i)$ " is called *Oracle Access*

Stochastic First Order Optimization

Given:

- Ability to compute $g(\mathbf{x})$
- $\odot~$ Ability to randomly estimate $\mathbf{z}(\mathbf{x})\approx\frac{\partial g}{\partial \mathbf{x}}(\mathbf{x})$
- \odot Convex domain \mathbb{S}
- Maximum iterations T

Solve the problem:

 $\min_{\mathbf{x}\in\mathbb{S}} g(\mathbf{x})$

By computing $g(\mathbf{x})$ and $\mathbf{z}(\mathbf{x})$ at most T times

 \odot This "access to $g(\mathbf{x}_i)$ and $\mathbf{z}(\mathbf{x}_i)$ " is called *Oracle Access*

 Minimizing Oracle queries is minimizing the rounds of gradient descent

 $\odot~$ Let $\mathbb S$ be a convex domain

- $\odot~$ Let $\mathbb S$ be a convex domain

$$\|\frac{\partial g}{\partial \mathbf{x}}\|_2 \le L$$

- $\odot~$ Let $\mathbb S$ be a convex domain
- Let \$\mathcal{F}_{cv}(\mathbb{S}, L)\$ be the set of convex functions \$g\$ defined on \$\mathbb{S}\$ such that

$$\|\frac{\partial g}{\partial \mathbf{x}}\|_2 \le L$$

The oracle $\phi(\mathbf{x}, g)$ maps to a random pair $(\hat{g}(\mathbf{x}), \hat{\mathbf{z}}(\mathbf{x}))$ such that

$$\mathbb{E}[\hat{g}(\mathbf{x})] = g(\mathbf{x}) \qquad \mathbb{E}[\hat{\mathbf{z}}(\mathbf{x})] = rac{\partial g}{\partial \mathbf{x}} \qquad \mathbb{E}[\|\hat{\mathbf{z}}(\mathbf{x})\|_2 \leq L]$$

- $\odot~$ Let $\mathbb S$ be a convex domain
- Let \$\mathcal{F}_{cv}(\mathbb{S}, L)\$ be the set of convex functions \$g\$ defined on \$\mathbb{S}\$ such that

$$\|\frac{\partial g}{\partial \mathbf{x}}\|_2 \le L$$

The oracle $\phi(\mathbf{x}, g)$ maps to a random pair $(\hat{g}(\mathbf{x}), \hat{\mathbf{z}}(\mathbf{x}))$ such that

$$\mathbb{E}[\hat{g}(\mathbf{x})] = g(\mathbf{x}) \qquad \mathbb{E}[\hat{\mathbf{z}}(\mathbf{x})] = rac{\partial g}{\partial \mathbf{x}} \qquad \mathbb{E}[\|\hat{\mathbf{z}}(\mathbf{x})\|_2 \leq L]$$

◎ Let $M_T \in M_T$ denote any algorithm that makes T queries to $\phi(\mathbf{x}_i, g)$ and returns some \mathbf{x}_T

- $\odot~$ Let $\mathbb S$ be a convex domain
- Let \$\mathcal{F}_{cv}(\mathbb{S}, L)\$ be the set of convex functions \$g\$ defined on \$\mathbb{S}\$ such that

$$\|\frac{\partial g}{\partial \mathbf{x}}\|_2 \leq L$$

The oracle $\phi(\mathbf{x}, g)$ maps to a random pair $(\hat{g}(\mathbf{x}), \hat{\mathbf{z}}(\mathbf{x}))$ such that

$$\mathbb{E}[\hat{g}(\mathbf{x})] = g(\mathbf{x}) \qquad \mathbb{E}[\hat{\mathbf{z}}(\mathbf{x})] = rac{\partial g}{\partial \mathbf{x}} \qquad \mathbb{E}[\|\hat{\mathbf{z}}(\mathbf{x})\|_2 \leq L]$$

- ◎ Let $M_T \in M_T$ denote any algorithm that makes T queries to $\phi(\mathbf{x}_i, g)$ and returns some \mathbf{x}_T
- Let ε_T(M_T, g, φ) = g(x_T) − inf_{x∈S} g(x) be the error after T iterations using φ

Theorem 1

 \odot When \mathbb{S} contains the ℓ_{∞} ball $B_{\infty}(r)$,

- \odot When $\mathbb S$ contains the ℓ_∞ ball $B_\infty(r)$,
- $\odot\;$ There exists an oracle $\phi(\mathbf{x}, g)$ such that

$$\inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \min\left\{c_{0}Lr\sqrt{\frac{d}{\mathcal{T}}},\frac{Lr}{144}\right\}$$

- \odot When $\mathbb S$ contains the ℓ_∞ ball $B_\infty(r)$,
- $\odot\;$ There exists an oracle $\phi(\mathbf{x}, g)$ such that

$$\inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \min\left\{c_{0}Lr\sqrt{\frac{d}{\mathcal{T}}},\frac{Lr}{144}\right\}$$

Theorem 1

- \odot When $\mathbb S$ contains the ℓ_∞ ball $B_\infty(r)$,
- $\odot\;$ There exists an oracle $\phi(\mathbf{x},g)$ such that

$$\inf_{\mathcal{M}_{\mathcal{T}}\in\mathbb{M}_{\mathcal{T}}}\sup_{g\in\mathcal{F}_{cv}(\mathbb{S},L)}\mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)]\geq\min\left\{c_{0}Lr\sqrt{\frac{d}{\mathcal{T}}},\frac{Lr}{144}\right\}$$

 $\odot \varepsilon$ should scale linearly with r

- \odot When $\mathbb S$ contains the ℓ_∞ ball $B_\infty(r)$,
- $\odot~$ There exists an oracle $\phi(\mathbf{x}, g)$ such that

$$\inf_{\mathcal{M}_{\mathcal{T}}\in\mathbb{M}_{\mathcal{T}}}\sup_{g\in\mathcal{F}_{cv}(\mathbb{S},L)}\mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)]\geq\min\left\{c_{0}Lr\sqrt{\frac{d}{\mathcal{T}}},\frac{Lr}{144}\right\}$$

- $\odot \varepsilon$ should scale linearly with r
- Characterizes the first few and last many iterations

- \odot When $\mathbb S$ contains the ℓ_∞ ball $B_\infty(r)$,
- $\odot\,$ There exists an oracle $\phi({\bf x},g)$ such that

$$\inf_{\mathcal{M}_{\mathcal{T}}\in\mathbb{M}_{\mathcal{T}}} \sup_{g\in\mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \min\left\{c_{0}Lr\sqrt{\frac{d}{\mathcal{T}}},\frac{Lr}{144}\right\}$$

- $\odot \varepsilon$ should scale linearly with r
- Characterizes the first few and last many iterations
- Mirror Descent achieves this rate of $O(Lr\sqrt{\frac{d}{T}})$

- \odot When $\mathbb S$ contains the ℓ_∞ ball $B_\infty(r)$,
- $\odot\,$ There exists an oracle $\phi({\bf x},g)$ such that

$$\inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \min\left\{c_0 Lr \sqrt{\frac{d}{\mathcal{T}}}, \frac{Lr}{144}\right\}$$

- $\odot \ \varepsilon$ should scale linearly with r
- Characterizes the first few and last many iterations
- Mirror Descent achieves this rate of $O(Lr\sqrt{\frac{d}{T}})$
- \odot Can we get better rates if we add any assumptions about g?

F_{scv}(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:

- *F_{scv}*(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:
- \odot For all $\alpha \in [0, 1]$, and all $\mathbf{x}, \mathbf{y} \in \mathbb{S}$,

$$g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) + \alpha(1 - \alpha)\frac{\gamma^2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

- *F_{scv}*(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:
- \odot For all $\alpha \in [0, 1]$, and all $\mathbf{x}, \mathbf{y} \in \mathbb{S}$,

$$g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) + \alpha(1 - \alpha)\frac{\gamma^2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

 \odot We are always at least γ -bowl shaped

- *F_{scv}*(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:
- \odot For all $\alpha \in [0, 1]$, and all $\mathbf{x}, \mathbf{y} \in \mathbb{S}$,

$$g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) + \alpha(1 - \alpha)\frac{\gamma^2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

- \odot We are always at least γ -bowl shaped
- $\odot~$ Our Hessian has minimum Eigenvalue $\geq \gamma$

- *F_{scv}*(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:
- \odot For all $\alpha \in [0, 1]$, and all $\mathbf{x}, \mathbf{y} \in \mathbb{S}$,

$$g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) + \alpha(1 - \alpha)\frac{\gamma^2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

- \odot We are always at least γ -bowl shaped
- $\odot~$ Our Hessian has minimum Eigenvalue $\geq \gamma$
 - $\circ~$ In 1 dimension, the 2^{nd} derivative is $\geq \gamma$

- *F_{scv}*(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:
- \odot For all $\alpha \in [0, 1]$, and all $\mathbf{x}, \mathbf{y} \in \mathbb{S}$,

$$g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) + \alpha(1 - \alpha)\frac{\gamma^2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

- \odot We are always at least γ -bowl shaped
- $\odot~$ Our Hessian has minimum Eigenvalue $\geq \gamma$

 $\circ~$ In 1 dimension, the 2^{nd} derivative is $\geq \gamma$

• Why is $\mathcal{F}_{scv}(\mathbb{S}, L, \gamma)$ really weird?

- *F_{scv}*(S, L, γ) is the set of L-Lipschitz functions that are γ-strongly convex:
- \odot For all $\alpha \in [0,1]$, and all $\mathbf{x}, \mathbf{y} \in \mathbb{S}$,

$$g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) + \alpha(1 - \alpha)\frac{\gamma^2}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

- \odot We are always at least γ -bowl shaped
- $\odot~$ Our Hessian has minimum Eigenvalue $\geq \gamma$

 $\circ~$ In 1 dimension, the 2^{nd} derivative is $\geq \gamma$

• Why is $\mathcal{F}_{scv}(\mathbb{S}, L, \gamma)$ really weird?

•
$$r \leq \frac{4L}{\gamma^2 \sqrt{a}}$$

Theorem 2

• When S equals the ℓ_{∞} ball $B_{\infty}(r)$,

- ⊙ When S equals the ℓ_∞ ball $B_\infty(r)$,
- $\odot\,$ There exists an oracle $\phi({\bf x},g)$ such that

$$\inf_{\mathcal{M}_{T}\in\mathbb{M}_{T}}\sup_{g\in\mathcal{F}_{scv}}\mathbb{E}[\varepsilon_{T}(\mathcal{M}_{T},g,\phi)]\geq\min\left\{c_{1}\frac{L^{2}}{\gamma^{2}T},c_{2}Lr\sqrt{\frac{d}{T}},\frac{L^{2}}{1152\gamma^{2}d},\frac{Lr}{144}\right\}$$

- ⊙ When S equals the ℓ_∞ ball $B_\infty(r)$,
- $\odot\,$ There exists an oracle $\phi({\bf x},g)$ such that

$$\inf_{\mathcal{M}_{T}\in\mathbb{M}_{T}}\sup_{g\in\mathcal{F}_{scv}}\mathbb{E}[\varepsilon_{T}(\mathcal{M}_{T},g,\phi)]\geq\min\left\{c_{1}\frac{L^{2}}{\gamma^{2}T},c_{2}Lr\sqrt{\frac{d}{T}},\frac{L^{2}}{1152\gamma^{2}d},\frac{Lr}{144}\right\}$$

Theorem 2

- When S equals the ℓ_∞ ball $B_\infty(r)$,
- $\odot~$ There exists an oracle $\phi(\mathbf{x}, g)$ such that

$$\inf_{\mathcal{M}_{T}\in\mathbb{M}_{T}}\sup_{g\in\mathcal{F}_{scv}}\mathbb{E}[\varepsilon_{T}(\mathcal{M}_{T},g,\phi)]\geq\min\left\{c_{1}\frac{L^{2}}{\gamma^{2}T},c_{2}Lr\sqrt{\frac{d}{T}},\frac{L^{2}}{1152\gamma^{2}d},\frac{Lr}{144}\right\}$$

 $\odot \varepsilon$ should scale linearly with r

- When S equals the ℓ_{∞} ball $B_{\infty}(r)$,
- $\odot~$ There exists an oracle $\phi(\mathbf{x}, g)$ such that

$$\inf_{\mathcal{M}_{T}\in\mathbb{M}_{T}}\sup_{g\in\mathcal{F}_{scv}}\mathbb{E}[\varepsilon_{T}(\mathcal{M}_{T},g,\phi)]\geq\min\left\{c_{1}\frac{L^{2}}{\gamma^{2}T},c_{2}Lr\sqrt{\frac{d}{T}},\frac{L^{2}}{1152\gamma^{2}d},\frac{Lr}{144}\right\}$$

- $\odot \ \varepsilon$ should scale linearly with r
- Characterizes the first few and last many iterations

- \odot When \mathbb{S} equals the ℓ_{∞} ball $B_{\infty}(r)$,
- $\odot\,$ There exists an oracle $\phi({\bf x},g)$ such that

$$\inf_{\mathcal{M}_{T} \in \mathbb{M}_{T}} \sup_{g \in \mathcal{F}_{scv}} \mathbb{E}[\varepsilon_{T}(\mathcal{M}_{T}, g, \phi)] \geq \min\left\{c_{1}\frac{L^{2}}{\gamma^{2}T}, c_{2}Lr\sqrt{\frac{d}{T}}, \frac{L^{2}}{1152\gamma^{2}d}, \frac{Lr}{144}\right\}$$

- $\odot \ \varepsilon$ should scale linearly with r
- Characterizes the first few and last many iterations
- Algorithms almost achieve this rate of $O(\frac{L^2}{\gamma^2 T})$

- ⊙ When S equals the ℓ_∞ ball $B_\infty(r)$,
- $\odot\,$ There exists an oracle $\phi({\bf x},g)$ such that

$$\inf_{\mathcal{M}_{T} \in \mathbb{M}_{T}} \sup_{g \in \mathcal{F}_{scv}} \mathbb{E}[\varepsilon_{T}(\mathcal{M}_{T}, g, \phi)] \geq \min\left\{c_{1}\frac{L^{2}}{\gamma^{2}T}, c_{2}Lr\sqrt{\frac{d}{T}}, \frac{L^{2}}{1152\gamma^{2}d}, \frac{Lr}{144}\right\}$$

- $\odot \ \varepsilon$ should scale linearly with r
- Characterizes the first few and last many iterations
- Algorithms almost achieve this rate of $O(\frac{L^2}{\gamma^2 T})$
- $\odot~$ If $\gamma \approx$ 0, we retrieve the Lipschitz lower bound

Information Theory

Beautiful subfield of mathematics

- Beautiful subfield of mathematics
- Describes when there is enough random information to communicate some structure

- Beautiful subfield of mathematics
- Describes when there is enough random information to communicate some structure
 - How many times do I need to flip a coin to figure out if heads or tails is more likely?

- Beautiful subfield of mathematics
- Describes when there is enough random information to communicate some structure
 - How many times do I need to flip a coin to figure out if heads or tails is more likely?
- Powerful tool for making sharp lower bounds on the number of samples needed from a random distribution

 $\odot~$ Suppose coin α is heads with probability $\frac{1}{2}+\delta$

- ◎ Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- Suppose coin β is heads with probability $\frac{1}{2} \delta$

- Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.

- Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- ◎ How many times *T* do I need to flip the coin for you to know if I am using α or β ?

- Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- ⊙ Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- ◎ How many times *T* do I need to flip the coin for you to know if I am using α or β ?
 - Chernoff Bound: $T = O(\frac{1}{\delta^2})$ rounds are suffice to have 90% certainty.

- Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- ⊙ Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- ◎ How many times *T* do I need to flip the coin for you to know if I am using α or β ?
 - Chernoff Bound: $T = O(\frac{1}{\delta^2})$ rounds are suffice to have 90% certainty.
 - Can we prove this is optimal?

- Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- ⊙ Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- ◎ How many times *T* do I need to flip the coin for you to know if I am using α or β ?
 - Chernoff Bound: $T = O(\frac{1}{\delta^2})$ rounds are suffice to have 90% certainty.
 - Can we prove this is optimal?
- \odot The smaller δ is, the less information we get from every coin flip.

Intuition: The hardness of finding the true parameter that generates random data is lower bounded by the hardness of distinguishing between two parameters.

Intuition: The hardness of finding the true parameter that generates random data is lower bounded by the hardness of distinguishing between two parameters.

Le Cam's Lemma

Let $\mathbb{P} = \{\mathcal{P}_{\theta}\}$ be a set of probability distributions parameterized by a vector $\theta \in \Theta$. Let *S* be a sample from some \mathcal{P}_{θ} . Let $\hat{\theta}(S)$ map *S* to any element of Θ . Let $d : \Theta \times \Theta \to \mathbb{R}$ be an error metric.

Intuition: The hardness of finding the true parameter that generates random data is lower bounded by the hardness of distinguishing between two parameters.

Le Cam's Lemma

Let $\mathbb{P} = \{\mathcal{P}_{\theta}\}$ be a set of probability distributions parameterized by a vector $\theta \in \Theta$. Let *S* be a sample from some \mathcal{P}_{θ} . Let $\hat{\theta}(S)$ map *S* to any element of Θ . Let $d : \Theta \times \Theta \to \mathbb{R}$ be an error metric. Then, for any $\mathcal{P}_{\theta_1}, \mathcal{P}_{\theta_2} \in \mathbb{P}$,

Intuition: The hardness of finding the true parameter that generates random data is lower bounded by the hardness of distinguishing between two parameters.

Le Cam's Lemma

Let $\mathbb{P} = \{\mathcal{P}_{\theta}\}$ be a set of probability distributions parameterized by a vector $\theta \in \Theta$. Let *S* be a sample from some \mathcal{P}_{θ} . Let $\hat{\theta}(S)$ map *S* to any element of Θ . Let $d : \Theta \times \Theta \to \mathbb{R}$ be an error metric. Then, for any $\mathcal{P}_{\theta_1}, \mathcal{P}_{\theta_2} \in \mathbb{P}$,

 $\inf_{\hat{\theta}} \sup_{\mathcal{P}_{\theta} \in \mathbb{P}} \mathbb{E}_{S \sim \mathcal{P}_{\theta}} [d(\hat{\theta}(S), \theta)] \geq \frac{d(\theta_1, \theta_2)}{4} \int_{S} \min\{\Pr[\mathcal{P}_{\theta_1} = S], \Pr[\mathcal{P}_{\theta_2} = S]\} dS$

- ⊙ Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- How many times T do I need to flip the coin for you to know if I am using α or β ?
 - Chernoff Bound: $T = O(\frac{1}{\delta^2})$ rounds are suffice to have 90% certainty.

- ⊙ Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- How many times T do I need to flip the coin for you to know if I am using α or β ?
 - Chernoff Bound: $T = O(\frac{1}{\delta^2})$ rounds are suffice to have 90% certainty.
- ⊙ For $\delta \in (0, 1/4)$, for any estimator $\hat{\alpha}$, we have

$$\sup_{\alpha^* \in \{\frac{1}{2} + \delta, \frac{1}{2} - \delta\}} \Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \sqrt{8T\delta^2}$$

- ⊙ Suppose coin α is heads with probability $\frac{1}{2} + \delta$
- Suppose coin β is heads with probability $\frac{1}{2} \delta$
- ◎ I randomly pick up one coin.
- How many times T do I need to flip the coin for you to know if I am using α or β ?
 - Chernoff Bound: $T = O(\frac{1}{\delta^2})$ rounds are suffice to have 90% certainty.
- \odot For $\delta \in (0, 1/4)$, for any estimator \hat{lpha} , we have

$$\sup_{\alpha^* \in \{\frac{1}{2} + \delta, \frac{1}{2} - \delta\}} \Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \sqrt{8T\delta^2}$$

• We get constant probability for $T = \Omega(\frac{1}{\delta^2})$, so the Chernoff bound is optimal!

 $\odot~$ Suppose α is a stack of $\textit{d}~\delta\textsc{-biased}$ coins

- $\odot~$ Suppose α is a stack of $\textit{d}~\delta\textsc{-biased}$ coins
- $\odot~$ Suppose β is a stack of $d~\delta\text{-biased}$ coins

- \odot Suppose α is a stack of $d \delta$ -biased coins
- $\odot~$ Suppose β is a stack of $d~\delta\mbox{-biased}$ coins
- ◎ I randomly pick up one stack of coins

- $\odot~$ Suppose α is a stack of $d~\delta\text{-biased}$ coins
- $\odot~$ Suppose β is a stack of $d~\delta\mbox{-biased}$ coins
- ◎ I randomly pick up one stack of coins
- \odot I sample $i \sim [d]$, and flip the i^{th} coin in my stack

- $\odot~$ Suppose α is a stack of $d~\delta\text{-biased}$ coins
- $\odot~$ Suppose β is a stack of $d~\delta\mbox{-biased}$ coins
- ◎ I randomly pick up one stack of coins
- \odot I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know if I am using α or β?

- $\odot~$ Suppose α is a stack of $d~\delta\text{-biased}$ coins
- $\odot~$ Suppose β is a stack of $d~\delta\mbox{-biased}$ coins
- ◎ I randomly pick up one stack of coins
- \odot I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know if I am using α or β?
- $\odot~$ Observation: This depends on how similar α and β are.

- $\odot~$ Suppose α is a stack of $d~\delta\text{-biased}$ coins
- $\odot~$ Suppose β is a stack of $d~\delta\mbox{-biased}$ coins
- ◎ I randomly pick up one stack of coins
- \odot I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know if I am using α or β?
- $\odot~$ Observation: This depends on how similar α and β are.
- \odot In the best case, this should require $T \approx \frac{1}{\delta^2}$

⊙ Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins

- \odot Suppose $\mathcal{V} = \{\alpha_1, \dots, \alpha_k\}$ are stacks of *d* δ -biased coins
- $\odot\,$ I randomly pick up one stack of coins α^*

- \odot Suppose $\mathcal{V} = \{\alpha_1, \dots, \alpha_k\}$ are stacks of $d \delta$ -biased coins
- \odot I randomly pick up one stack of coins $lpha^*$
- ◎ I sample $i \sim [d]$, and flip the i^{th} coin in my stack

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- \odot I randomly pick up one stack of coins $lpha^*$
- I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_j I am using?

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- $\odot~$ l randomly pick up one stack of coins α^*
- I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_j I am using?
- This is hard to reason about, but there should be a minimum T needed

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- $\odot~$ l randomly pick up one stack of coins α^*
- I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_j I am using?
- This is hard to reason about, but there should be a minimum T needed
- Observation: This depends on the similarities between $α_j$ and $α_k$ for all *j*, *k*

Fano's Inequality

Fano's Inequality

Let $\theta_1, \ldots, \theta_k$ describe probability distributions. Nature picks some θ^* uniformly at random. Dataset *S* is generated from θ^* .

Fano's Inequality

Fano's Inequality

Let $\theta_1, \ldots, \theta_k$ describe probability distributions. Nature picks some θ^* uniformly at random. Dataset *S* is generated from θ^* . Then, any estimate $\hat{\theta}$ of θ^* given only *S* has

$$\Pr[\hat{\theta} \neq \theta^*] \ge 1 - \frac{\mathbb{I}(\theta^*, S) + \log 2}{\log k}$$

Where $\mathbb{I}(\theta^*, S)$ is the mutual information between θ^* and S.

Fano's Inequality

Fano's Inequality

Let $\theta_1, \ldots, \theta_k$ describe probability distributions. Nature picks some θ^* uniformly at random. Dataset *S* is generated from θ^* . Then, any estimate $\hat{\theta}$ of θ^* given only *S* has

$$\Pr[\hat{\theta} \neq \theta^*] \ge 1 - \frac{\mathbb{I}(\theta^*, S) + \log 2}{\log k}$$

Where $\mathbb{I}(\theta^*, S)$ is the mutual information between θ^* and S.

Intuition: if S does not reveal much about θ^* , and if there are many candidates $\hat{\theta}$, then we cannot find θ^* reliably.

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- $\odot~$ l randomly pick up one stack of coins α^*
- ⊙ I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_j I am using?

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- $\odot~$ l randomly pick up one stack of coins α^*
- ⊙ I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_i I am using?
- $\odot~$ The coin flips do not reveal much about α^* because δ is small.

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- $\odot~$ l randomly pick up one stack of coins α^*
- ⊙ I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_j I am using?
- $\odot~$ The coin flips do not reveal much about α^* because δ is small.
- \odot For $\delta \in (0, 1/4)$, any test \hat{lpha} has

$$\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16T\delta^2 + \log 2}{\log k}$$

- 𝔅 Suppose $V = {α_1, ..., α_k}$ are stacks of *d* δ-biased coins
- \odot I randomly pick up one stack of coins $lpha^*$
- ⊙ I sample $i \sim [d]$, and flip the i^{th} coin in my stack
- How many times T do I need to pick and flip a coin for you to know which α_j I am using?
- $\odot~$ The coin flips do not reveal much about α^* because δ is small.
- \odot For $\delta \in (0, 1/4)$, any test \hat{lpha} has

$$\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16 T \delta^2 + \log 2}{\log k}$$

If we pick $k = O(c^d)$, then we need $T = Ω(\frac{d}{\delta^2})$ for 90% confidence.

Stochastic Optimization

$$\sup_{\phi} \inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S}, L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}}, g, \phi)] \geq \Omega(\frac{1}{\sqrt{\mathcal{T}}})$$

$$\sup_{\phi} \inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \Omega(\frac{1}{\sqrt{\mathcal{T}}})$$

How can we make stochastic optimization look like recovering
 α from coin flips?

$$\sup_{\phi} \inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \Omega(\frac{1}{\sqrt{\mathcal{T}}})$$

- \odot How can we make stochastic optimization look like recovering α from coin flips?
- \odot We can design the oracle $\phi(\mathbf{x}_t, g)$

$$\sup_{\phi} \inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \Omega(\frac{1}{\sqrt{\mathcal{T}}})$$

- $\odot\,$ How can we make stochastic optimization look like recovering α from coin flips?
- \odot We can design the oracle $\phi(\mathbf{x}_t, g)$
- We can restrict to a finite subset of $\mathcal{F}_{cv}(\mathbb{S}, L)$

$$\sup_{\phi} \inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \sup_{g \in \mathcal{F}_{cv}(\mathbb{S},L)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}},g,\phi)] \geq \Omega(\frac{1}{\sqrt{\mathcal{T}}})$$

- \odot How can we make stochastic optimization look like recovering α from coin flips?
- \odot We can design the oracle $\phi(\mathbf{x}_t, g)$
- We can restrict to a finite subset of $\mathcal{F}_{cv}(\mathbb{S}, L)$
- Show that for some oracle $φ(x_t, g)$ and $G(δ) ⊆ F_{cv}(S, L)$, we have

$$\inf_{\mathcal{M}_{\mathcal{T}} \in \mathbb{M}_{\mathcal{T}}} \max_{g \in \mathcal{G}(\delta)} \mathbb{E}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}}, g, \phi)] \geq \Omega(\frac{1}{\sqrt{\mathcal{T}}})$$

◎ We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}

- $\odot~$ We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}
- We pick $\mathcal{G}(\delta) \subseteq \mathcal{F}_{cv}$ such that

- ⊙ We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}
- ⊙ We pick $\mathcal{G}(\delta) \subseteq \mathcal{F}_{cv}$ such that
 - If we can get error ε on all $g \in \mathcal{G}(\delta)$, then we can recover a stack of δ -biased coins α^*

- We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}
- We pick $\mathcal{G}(\delta) \subseteq \mathcal{F}_{cv}$ such that
 - If we can get error ε on all $g \in \mathcal{G}(\delta)$, then we can recover a stack of δ -biased coins α^*

•
$$|\mathcal{G}(\delta)| = \Theta(c^d)$$

- ⊙ We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}
- We pick $\mathcal{G}(\delta) \subseteq \mathcal{F}_{cv}$ such that
 - If we can get error ε on all $g \in \mathcal{G}(\delta)$, then we can recover a stack of δ -biased coins α^*

$$\circ |\mathcal{G}(\delta)| = \Theta(c^d)$$

•
$$\delta = \Theta(\varepsilon)$$

- ⊙ We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}
- \odot We pick $\mathcal{G}(\delta) \subseteq \mathcal{F}_{cv}$ such that
 - If we can get error ε on all $g \in \mathcal{G}(\delta)$, then we can recover a stack of δ -biased coins α^*

$$\circ |\mathcal{G}(\delta)| = \Theta(c^d)$$

$$\circ \delta = \Theta(\varepsilon)$$

• Recall that recovering a stack of coins takes $T = \Omega(\frac{d}{\delta^2})$ samples

- ⊙ We want to achieve error $\varepsilon > 0$ on \mathcal{F}_{cv}
- ⊙ We pick $G(δ) ⊆ F_{cv}$ such that
 - If we can get error ε on all $g \in \mathcal{G}(\delta)$, then we can recover a stack of δ -biased coins α^*

$$\circ |\mathcal{G}(\delta)| = \Theta(c^d)$$

$$\circ \delta = \Theta(\varepsilon)$$

- Recall that recovering a stack of coins takes $T = \Omega(\frac{d}{\delta^2})$ samples
- Since $\mathcal{G}(\delta)$ yields $\delta = \Theta(\varepsilon)$, we know $T = \Omega(\frac{d}{\varepsilon^2})$ and $\varepsilon = \Omega(\sqrt{\frac{d}{T}})$

Proof Intuition: Strong Convexity

- $\odot~$ We want to achieve error $\varepsilon > 0$ on $\mathcal{F}_{\it scv}$
- We pick $\mathcal{G}(\delta) \subseteq \mathcal{F}_{cv}$ such that
 - If we can get error ε on all $g \in \mathcal{G}(\delta)$, then we can recover a stack of δ -biased coins α^*

$$\circ |\mathcal{G}(\delta)| = \Theta(c^d)$$

•
$$\delta = \Theta(\sqrt{\varepsilon})$$

- Recall that recovering a stack of coins takes $T = \Omega(\frac{d}{\delta^2})$ samples
- Since $\mathcal{G}(\delta)$ yields $\delta = \Theta(\sqrt{\varepsilon})$, we know $T = \Omega(\frac{d}{\varepsilon})$ and $\varepsilon = \Omega(\frac{\sqrt{d}}{T})$

• Let $\alpha \in \{-1, 1\}^n$. Fix $\delta > 0$.

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

[⊙] Define $g_{\alpha}(\mathbf{x}) := \frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} - \alpha_i \delta\right) f^-(x_i)$

• Let
$$\alpha \in \{-1,1\}^n$$
. Fix $\delta > 0$.

$$o Define g_{\alpha}(\mathbf{x}) := \frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_{i} \delta \right) f^{+}(x_{i}) + \left(\frac{1}{2} - \alpha_{i} \delta \right) f^{-}(x_{i})$$

- \odot Where $f^+(x) := \left|x + \frac{1}{2}\right|$ and $f^-(x) := \left|x \frac{1}{2}\right|$
- Desmos Graph Link

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

- [☉] Define $g_{\alpha}(\mathbf{x}) := \frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} \alpha_i \delta\right) f^-(x_i)$
- Where $f^+(x) := |x + \frac{1}{2}|$ and $f^-(x) := |x \frac{1}{2}|$
- O Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

- Obstruct on the g_α(**x**) := $\frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} \alpha_i \delta\right) f^-(x_i)$
- Where $f^+(x) := |x + \frac{1}{2}|$ and $f^-(x) := |x \frac{1}{2}|$
- O Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

- Obstruct Define g_α(**x**) := ^c/_d ∑^d_{i=1} (¹/₂ + α_iδ) f⁺(x_i) + (¹/₂ − α_iδ) f[−](x_i)
- Where $f^+(x) := \left|x + \frac{1}{2}\right|$ and $f^-(x) := \left|x \frac{1}{2}\right|$
- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

- Obstruct on the g_α(**x**) := $\frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} \alpha_i \delta\right) f^-(x_i)$
- Where $f^+(x) := |x + \frac{1}{2}|$ and $f^-(x) := |x \frac{1}{2}|$
- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$
 - Return $f^{-}(x_i)$ and its gradient w.p. $\frac{1}{2} \alpha_i \delta$

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

- Define $g_{\alpha}(\mathbf{x}) := \frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} \alpha_i \delta\right) f^-(x_i)$
- Where $f^+(x) := |x + \frac{1}{2}|$ and $f^-(x) := |x \frac{1}{2}|$
- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$
 - Return $f^{-}(x_i)$ and its gradient w.p. $\frac{1}{2} \alpha_i \delta$
- $\odot~$ This is the same as flipping a randomly chosen coin from α

• Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$.

- Objective g_α(**x**) := ^c/_d ∑^d_{i=1} (¹/₂ + α_iδ) f⁺(x_i) + (¹/₂ − α_iδ) f⁻(x_i)
- Where $f^+(x) := |x + \frac{1}{2}|$ and $f^-(x) := |x \frac{1}{2}|$
- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$
 - Return $f^{-}(x_i)$ and its gradient w.p. $\frac{1}{2} \alpha_i \delta$
- $\odot~$ This is the same as flipping a randomly chosen coin from α
- \odot If we optimize dimension *i* of **x**, then we know the *i*th coin of α

 \odot Let us pick $\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$ such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

• Let us pick
$$\mathcal{V} = \{\alpha_1, \dots, \alpha_k\}$$
 such that
 α_i and α_j are equal at at most $\frac{d}{4}$ indices
• Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$

◎ Let us pick
$$\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$$
 such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

- Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$
- ◎ Then if $\mathbb{E}_{\phi}[\varepsilon_T(\mathcal{M}_T, g_{\alpha}, \phi)] \leq \frac{\delta}{8}$ for all $\alpha \in \mathcal{V}$, then we uniquely decode α with probability $\frac{2}{3}$

◎ Let us pick
$$\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$$
 such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

- \odot Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$
- ◎ Then if $\mathbb{E}_{\phi}[\varepsilon_{\mathcal{T}}(\mathcal{M}_{\mathcal{T}}, g_{\alpha}, \phi)] \leq \frac{\delta}{8}$ for all $\alpha \in \mathcal{V}$, then we uniquely decode α with probability $\frac{2}{3}$

• Algebra and Markov's Inequality

◎ Let us pick
$$\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$$
 such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

- \odot Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$
- So Then if $\mathbb{E}_{\phi}[\varepsilon_{T}(\mathcal{M}_{T}, g_{\alpha}, \phi)] ≤ \frac{\delta}{8}$ for all α ∈ V, then we uniquely decode α with probability $\frac{2}{3}$

• Algebra and Markov's Inequality

◎ So, given $\varepsilon > 0$, we can use $\delta = 8\varepsilon$.

⊙ Recall that for δ ∈ (0, 1/4), any test â has $\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16 T \delta^2 + \log 2}{\log |\mathcal{V}|}$

Recall that for
$$\delta \in (0, 1/4)$$
, any test $\hat{\alpha}$ has
 $\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16 T \delta^2 + \log 2}{\log |\mathcal{V}|}$

 \odot Further, for $\delta = 8\varepsilon$, we have

$$\frac{1}{3} \geq \Pr[\hat{\alpha} \neq \alpha^*]$$

Recall that for
$$\delta \in (0, 1/4)$$
, any test $\hat{\alpha}$ has
 $\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16 T \delta^2 + \log 2}{\log |\mathcal{V}|}$

◎ Further, for $\delta = 8\varepsilon$, we have

$$\frac{1}{3} \geq \Pr[\hat{\alpha} \neq \alpha^*]$$

So, we have

$$\begin{split} &\frac{1}{3} \geq 1 - \frac{16 T \cdot (8\varepsilon)^2 + \log 2}{\log |\mathcal{V}|} \\ &\frac{1}{3} \geq 1 - \frac{c_0 T \varepsilon^2 + \log 2}{\frac{d}{2} \log(2/\sqrt{e})} \\ &\varepsilon \geq \Omega \left(\sqrt{\frac{d}{T}}\right) \end{split}$$

• Let $\alpha \in \{-1, 1\}^n$. Fix $\delta > 0$. Fix $\theta \in [0, 1]$.

(a) Let α ∈ {−1, 1}ⁿ. Fix δ > 0. Fix θ ∈ [0, 1].
(b) Define g_α(**x**) := ^c/_d ∑^d_{i=1} (¹/₂ + α_iδ) f⁺(x_i) + (¹/₂ − α_iδ)f⁻(x_i)

Desmos Graph Link

- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:

- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly

- O Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$

- O Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$
 - Return $f^{-}(x_i)$ and its gradient w.p. $\frac{1}{2} \alpha_i \delta$

(a) Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$. Fix $\theta \in [0, 1]$.
(b) Define $g_{\alpha}(\mathbf{x}) := \frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} - \alpha_i \delta\right) f^-(x_i)$
(c) Where $f^+(x) := \theta \left| x + \frac{1}{2} \right| + \frac{1-\theta}{4} \left(x + \frac{1}{2} \right)^2$
(c) $f^-(x) := \theta \left| x - \frac{1}{2} \right| + \frac{1-\theta}{4} \left(x - \frac{1}{2} \right)^2$

- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$
 - Return $f^{-}(x_i)$ and its gradient w.p. $\frac{1}{2} \alpha_i \delta$
- \odot This is the same as flipping a randomly chosen coin α_i

(a) Let
$$\alpha \in \{-1, 1\}^n$$
. Fix $\delta > 0$. Fix $\theta \in [0, 1]$.
(b) Define $g_{\alpha}(\mathbf{x}) := \frac{c}{d} \sum_{i=1}^{d} \left(\frac{1}{2} + \alpha_i \delta\right) f^+(x_i) + \left(\frac{1}{2} - \alpha_i \delta\right) f^-(x_i)$
(c) Where $f^+(x) := \theta \left| x + \frac{1}{2} \right| + \frac{1-\theta}{4} \left(x + \frac{1}{2} \right)^2$
(c) $f^-(x) := \theta \left| x - \frac{1}{2} \right| + \frac{1-\theta}{4} \left(x - \frac{1}{2} \right)^2$

- Desmos Graph Link
- Let our oracle $\phi(\mathbf{x}, g_{\alpha})$ be:
 - Sample $i \sim [d]$ uniformly
 - Return $f^+(x_i)$ and its gradient w.p. $\frac{1}{2} + \alpha_i \delta$
 - Return $f^{-}(x_i)$ and its gradient w.p. $\frac{1}{2} \alpha_i \delta$
- \odot This is the same as flipping a randomly chosen coin α_i
- \odot If we optimize dimension *i* of **x**, then we know α_i

• Let us pick
$$\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$$
 such that

$$lpha_i$$
 and $lpha_j$ are equal at at most $rac{d}{4}$ indices

• Let us pick
$$\mathcal{V} = \{\alpha_1, \dots, \alpha_k\}$$
 such that
 α_i and α_j are equal at at most $\frac{d}{4}$ indices

 \odot Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$

$$\odot$$
 Let us pick $\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$ such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

- \odot Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$
- Then if $\mathbb{E}_{\phi}[\varepsilon_{T}(\mathcal{M}_{T}, g_{\alpha}, \phi)] \leq \frac{C_{0}\delta^{2}}{1-\theta}$, then we uniquely decode α with probability $\frac{2}{3}$

$$\odot$$
 Let us pick $\mathcal{V} = \{\alpha_1, \ldots, \alpha_k\}$ such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

- \odot Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$
- One if $\mathbb{E}_{\phi}[\varepsilon_{T}(\mathcal{M}_{T}, g_{\alpha}, \phi)] ≤ \frac{C_{0}\delta^{2}}{1-\theta}$, then we uniquely decode *α* with probability $\frac{2}{3}$
 - Algebra and Markov's Inequality

$$\odot$$
 Let us pick $\mathcal{V} = \{\alpha_1, \dots, \alpha_k\}$ such that

$$\alpha_i$$
 and α_j are equal at at most $\frac{d}{4}$ indices

- Then we can take $k = |\mathcal{V}| = (2/\sqrt{e})^{d/2}$
- One if $\mathbb{E}_{\phi}[\varepsilon_{T}(\mathcal{M}_{T}, g_{\alpha}, \phi)] ≤ \frac{C_{0}\delta^{2}}{1-\theta}$, then we uniquely decode *α* with probability $\frac{2}{3}$

• Algebra and Markov's Inequality

⊙ So, given ε > 0, we can use $δ = √C_1ε(1-θ)$.

Recall that for \$\delta \in (0, 1/4)\$, any test \$\hat{\alpha}\$ has
$$\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16 T \delta^2 + \log 2}{\log |\mathcal{V}|}$$
Further, for $\delta = \sqrt{C_1 \varepsilon (1 - \theta)}$, we have
 $\frac{1}{3} \ge \Pr[\hat{\alpha} \neq \alpha^*]$

Recall that for \$\delta \in (0, 1/4)\$, any test \$\hat{\alpha}\$ has
$$\Pr[\hat{\alpha} \neq \alpha^*] \ge 1 - \frac{16 T \delta^2 + \log 2}{\log |\mathcal{V}|}$$
Further, for $\delta = \sqrt{C_1 \varepsilon (1 - \theta)}$, we have
 $\frac{1}{3} \ge \Pr[\hat{\alpha} \neq \alpha^*]$

 $\odot~$ So, for θ not too large, we have

$$\begin{split} &\frac{1}{3} \geq 1 - \frac{16 T \cdot (C_1 \varepsilon (1 - \theta))^2 + \log 2}{\log |\mathcal{V}|} \\ &\varepsilon \geq \Omega \left(\frac{d}{(1 - \theta) T} \right) \end{split}$$

