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Introduction & The Results



Stochastic Convex Optimization

} Really common tool in the real world

} Stochastic methods run faster than deterministic
} Theoretical results depends on the shape of the objective

◦ Lipschitz
◦ Strong convexity
◦ Strongly smooth

} Are our algorithms optimal for these settings?

◦ Yes. They are.
◦ There exists a Lipschitz/Strong Convex objective function and

stochastic gradient such that O( 1√
T )/O( 1

T ) iterations are
required.
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Stochastic First Order Optimization

Stochastic First Order Optimization
Given:

} Ability to compute g(x)

} Ability to randomly estimate z(x) ≈ ∂g
∂x(x)

} Convex domain S

} Maximum iterations T

Solve the problem:
min
x∈S

g(x)

By computing g(x) and z(x) at most T times

} This “access to g(xi) and z(xi)” is called Oracle Access
} Minimizing Oracle queries is minimizing the rounds of

gradient descent

4
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Result 1: Lipschitz

} Let S be a convex domain

} Let Fcv(S, L) be the set of convex functions g defined on S
such that

∥ ∂g
∂x∥2 ≤ L

} The oracle ϕ(x, g) maps to a random pair (ĝ(x), ẑ(x)) such
that

E[ĝ(x)] = g(x) E[ẑ(x)] =
∂g
∂x E[∥ẑ(x)∥2 ≤ L]

} Let MT ∈ MT denote any algorithm that makes T queries to
ϕ(xi, g) and returns some xT

} Let εT(MT, g, ϕ) = g(xT)− infx∈S g(x) be the error after T
iterations using ϕ
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Result 1: Lipschitz

Theorem 1

} When S contains the ℓ∞ ball B∞(r),

} There exists an oracle ϕ(x, g) such that

inf
MT∈MT

sup
g∈Fcv(S,L)

E[εT(MT, g, ϕ)] ≥ min

{
c0Lr

√
d
T ,

Lr
144

}

} ε should scale linearly with r
} Characterizes the first few and last many iterations
} Mirror Descent achieves this rate of O(Lr

√
d
T)

} Can we get better rates if we add any assumptions about g?
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Result 2: Strong Convex & Lipschitz

} Fscv(S, L, γ) is the set of L-Lipschitz functions that are
γ-strongly convex:

} For all α ∈ [0, 1], and all x,y ∈ S,

g(αx+(1−α)y) ≥ αg(x)+(1−α)g(y)+α(1−α)
γ2

2 ∥x−y∥2
2

} We are always at least γ-bowl shaped
} Our Hessian has minimum Eigenvalue ≥ γ

◦ In 1 dimension, the 2nd derivative is ≥ γ

} Why is Fscv(S, L, γ) really weird?

◦ r ≤ 4L
γ2

√
d

7
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Result 2: Strong Convex & Lipschitz

Theorem 2

} When S equals the ℓ∞ ball B∞(r),

} There exists an oracle ϕ(x, g) such that

inf
MT∈MT

sup
g∈Fscv

E[εT(MT, g, ϕ)] ≥ min

{
c1

L2

γ2T , c2Lr
√

d
T ,

L2

1152γ2d ,
Lr

144

}

} ε should scale linearly with r
} Characterizes the first few and last many iterations
} Algorithms almost achieve this rate of O( L2

γ2T)

} If γ ≈ 0, we retrieve the Lipschitz lower bound

8
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Information Theory



Information Theory 101

} Beautiful subfield of mathematics

} Describes when there is enough random information to
communicate some structure

◦ How many times do I need to flip a coin to figure out if heads
or tails is more likely?

} Powerful tool for making sharp lower bounds on the number
of samples needed from a random distribution
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Flipping Coin

} Suppose coin α is heads with probability 1
2 + δ

} Suppose coin β is heads with probability 1
2 − δ

} I randomly pick up one coin.
} How many times T do I need to flip the coin for you to know

if I am using α or β?

◦ Chernoff Bound: T = O( 1
δ2 ) rounds are suffice to have 90%

certainty.
◦ Can we prove this is optimal?

} The smaller δ is, the less information we get from every coin
flip.

11
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Le Cam’s Lemma

Intuition: The hardness of finding the true parameter that
generates random data is lower bounded by the hardness of
distinguishing between two parameters.

Le Cam’s Lemma
Let P = {Pθ} be a set of probability distributions parameterized
by a vector θ ∈ Θ. Let S be a sample from some Pθ. Let θ̂(S)
map S to any element of Θ. Let d : Θ×Θ → R be an error
metric.Then, for any Pθ1 ,Pθ2 ∈ P,

inf
θ̂

sup
Pθ∈P

E
S∼Pθ

[d(θ̂(S), θ)] ≥ d(θ1, θ2)

4

∫
S
min{Pr[Pθ1 = S],Pr[Pθ2 = S]}dS
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Flipping Coin

} Suppose coin α is heads with probability 1
2 + δ

} Suppose coin β is heads with probability 1
2 − δ

} I randomly pick up one coin.
} How many times T do I need to flip the coin for you to know

if I am using α or β?
◦ Chernoff Bound: T = O( 1

δ2 ) rounds are suffice to have 90%
certainty.

} For δ ∈ (0, 1/4), for any estimator α̂, we have

sup
α∗∈{ 1

2+δ, 1
2−δ}

Pr[α̂ ̸= α∗] ≥ 1 −
√

8Tδ2

} We get constant probability for T = Ω( 1
δ2 ), so the Chernoff

bound is optimal!

13



Flipping Coin

} Suppose coin α is heads with probability 1
2 + δ

} Suppose coin β is heads with probability 1
2 − δ

} I randomly pick up one coin.
} How many times T do I need to flip the coin for you to know

if I am using α or β?
◦ Chernoff Bound: T = O( 1

δ2 ) rounds are suffice to have 90%
certainty.

} For δ ∈ (0, 1/4), for any estimator α̂, we have

sup
α∗∈{ 1

2+δ, 1
2−δ}

Pr[α̂ ̸= α∗] ≥ 1 −
√

8Tδ2

} We get constant probability for T = Ω( 1
δ2 ), so the Chernoff

bound is optimal!

13



Flipping Coin

} Suppose coin α is heads with probability 1
2 + δ

} Suppose coin β is heads with probability 1
2 − δ

} I randomly pick up one coin.
} How many times T do I need to flip the coin for you to know

if I am using α or β?
◦ Chernoff Bound: T = O( 1

δ2 ) rounds are suffice to have 90%
certainty.

} For δ ∈ (0, 1/4), for any estimator α̂, we have

sup
α∗∈{ 1

2+δ, 1
2−δ}

Pr[α̂ ̸= α∗] ≥ 1 −
√

8Tδ2

} We get constant probability for T = Ω( 1
δ2 ), so the Chernoff

bound is optimal!

13



Flipping Coins

} Suppose α is a stack of d δ-biased coins

} Suppose β is a stack of d δ-biased coins
} I randomly pick up one stack of coins
} I sample i ∼ [d], and flip the ith coin in my stack
} How many times T do I need to pick and flip a coin for you to

know if I am using α or β?
} Observation: This depends on how similar α and β are.
} In the best case, this should require T ≈ 1

δ2

14
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Flipping Many Coins

} Suppose V = {α1, . . . , αk} are stacks of d δ-biased coins

} I randomly pick up one stack of coins α∗

} I sample i ∼ [d], and flip the ith coin in my stack
} How many times T do I need to pick and flip a coin for you to

know which αj I am using?
} This is hard to reason about, but there should be a minimum

T needed
} Observation: This depends on the similarities between αj and

αk for all j, k
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Fano’s Inequality

Fano’s Inequality
Let θ1, . . . , θk describe probability distributions. Nature picks
some θ∗ uniformly at random. Dataset S is generated from
θ∗.

Then, any estimate θ̂ of θ∗ given only S has

Pr[θ̂ ̸= θ∗] ≥ 1 − I(θ∗,S) + log 2
log k

Where I(θ∗,S) is the mutual information between θ∗ and S.

Intuition: if S does not reveal much about θ∗, and if there are
many candidates θ̂, then we cannot find θ∗ reliably.
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Flipping Many Coins

} Suppose V = {α1, . . . , αk} are stacks of d δ-biased coins
} I randomly pick up one stack of coins α∗

} I sample i ∼ [d], and flip the ith coin in my stack
} How many times T do I need to pick and flip a coin for you to

know which αj I am using?

} The coin flips do not reveal much about α∗ because δ is small.
} For δ ∈ (0, 1/4), any test α̂ has

Pr[α̂ ̸= α∗] ≥ 1 − 16Tδ2 + log 2
log k

} If we pick k = O(cd), then we need T = Ω( d
δ2 ) for 90%

confidence.
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Stochastic Optimization



Connecting Optimization & Coins

sup
ϕ

inf
MT∈MT

sup
g∈Fcv(S,L)

E[εT(MT, g, ϕ)] ≥ Ω(
1√
T
)

} How can we make stochastic optimization look like recovering
α from coin flips?

} We can design the oracle ϕ(xt, g)
} We can restrict to a finite subset of Fcv(S, L)
} Show that for some oracle ϕ(xt, g) and G(δ) ⊆ Fcv(S, L), we

have
inf

MT∈MT
max

g∈G(δ)
E[εT(MT, g, ϕ)] ≥ Ω(

1√
T
)

19
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Proof Intuition: Lipschitz

} We want to achieve error ε > 0 on Fcv

} We pick G(δ) ⊆ Fcv such that

◦ If we can get error ε on all g ∈ G(δ), then we can recover a
stack of δ-biased coins α∗

◦ |G(δ)| = Θ(cd)

◦ δ = Θ(ε)

} Recall that recovering a stack of coins takes T = Ω( d
δ2 )

samples
} Since G(δ) yields δ = Θ(ε), we know T = Ω( d

ε2 ) and
ε = Ω(

√
d
T)

20
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Proof Intuition: Strong Convexity

} We want to achieve error ε > 0 on Fscv

} We pick G(δ) ⊆ Fcv such that
◦ If we can get error ε on all g ∈ G(δ), then we can recover a

stack of δ-biased coins α∗

◦ |G(δ)| = Θ(cd)

◦ δ = Θ(
√
ε)

} Recall that recovering a stack of coins takes T = Ω( d
δ2 )

samples
} Since G(δ) yields δ = Θ(

√
ε), we know T = Ω(d

ε ) and
ε = Ω(

√
d

T )
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Construction for Lipschitz G(δ)

} Let α ∈ {−1, 1}n. Fix δ > 0.

} Define gα(x) := c
d
∑d

i=1
(1

2 + αiδ
)

f+(xi) + (1
2 − αiδ)f−(xi)

} Where f+(x) :=
∣∣x + 1

2
∣∣ and f−(x) :=

∣∣x − 1
2
∣∣

} Desmos Graph Link
} Let our oracle ϕ(x, gα) be:

◦ Sample i ∼ [d] uniformly
◦ Return f+(xi) and its gradient w.p. 1

2 + αiδ

◦ Return f−(xi) and its gradient w.p. 1
2 − αiδ

} This is the same as flipping a randomly chosen coin from α

} If we optimize dimension i of x, then we know the ith coin of α

22

https://www.desmos.com/calculator/weugk8hsuz
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Construction of the αs

} Let us pick V = {α1, . . . , αk} such that

αi and αj are equal at at most d
4 indices

} Then we can take k = |V| = (2/√e)d/2

} Then if Eϕ[εT(MT, gα, ϕ)] ≤ δ
8 for all α ∈ V, then we

uniquely decode α with probability 2
3

◦ Algebra and Markov’s Inequality

} So, given ε > 0, we can use δ = 8ε.
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Theorem 1

} Recall that for δ ∈ (0, 1/4), any test α̂ has

Pr[α̂ ̸= α∗] ≥ 1 − 16Tδ2 + log 2
log |V|

} Further, for δ = 8ε, we have
1
3 ≥ Pr[α̂ ̸= α∗]

} So, we have
1
3 ≥ 1 − 16T · (8ε)2 + log 2

log |V|
1
3 ≥ 1 − c0Tε2 + log 2

d
2 log(2/

√e)

ε ≥ Ω

(√
d
T

)
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Construction for Lipschitz G(δ)

} Let α ∈ {−1, 1}n. Fix δ > 0. Fix θ ∈ [0, 1].

} Define gα(x) := c
d
∑d

i=1
(1

2 + αiδ
)

f+(xi) + (1
2 − αiδ)f−(xi)

} Where f+(x) := θ
∣∣x + 1

2
∣∣+ 1−θ

4
(
x + 1

2
)2

} f−(x) := θ
∣∣x − 1

2
∣∣+ 1−θ

4
(
x − 1

2
)2

} Desmos Graph Link
} Let our oracle ϕ(x, gα) be:

◦ Sample i ∼ [d] uniformly
◦ Return f+(xi) and its gradient w.p. 1

2 + αiδ

◦ Return f−(xi) and its gradient w.p. 1
2 − αiδ

} This is the same as flipping a randomly chosen coin αi

} If we optimize dimension i of x, then we know αi
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Construction of the αs

} Let us pick V = {α1, . . . , αk} such that

αi and αj are equal at at most d
4 indices

} Then we can take k = |V| = (2/√e)d/2

} Then if Eϕ[εT(MT, gα, ϕ)] ≤ C0δ2

1−θ , then we uniquely decode
α with probability 2

3

◦ Algebra and Markov’s Inequality

} So, given ε > 0, we can use δ =
√

C1ε(1 − θ).
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Theorem 2

} Recall that for δ ∈ (0, 1/4), any test α̂ has

Pr[α̂ ̸= α∗] ≥ 1 − 16Tδ2 + log 2
log |V|

} Further, for δ =
√

C1ε(1 − θ), we have
1
3 ≥ Pr[α̂ ̸= α∗]

} So, for θ not too large, we have
1
3 ≥ 1 − 16T · (C1ε(1 − θ))2 + log 2

log |V|

ε ≥ Ω

(
d

(1 − θ)T

)
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