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© Prior Work: For fixed kernel k, Kernel Ridge Regression with
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© Introduced in [WA13]; popular in Gaussian Process literature
© It is hard to find good hyperparameters in practice
o Many Parameters: one mean, variance, & weight per Gaussian
o Is this because we need more observations?
o |s this because we need new algorithms?
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Reduce Kernel Learning to a Sparse Fourier Fitting problem

© Number of Observations needed for learning a Spectral
Mixture Kernel with Q Gaussians is O(Q?)

© Learning Spectral Mixture kernels is not statistically difficult

O

© Techniques generalize to other Stationary Kernels
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Thank You!



[d Andrew Wilson and Ryan Adams.

Gaussian process kernels for pattern discovery and
extrapolation.

In International Conference on Machine Learning, pages
1067-1075, 2013.
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