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Robust Active Interpolation
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} We want to interpolate y(t) for 0 ≤ t ≤ T

} We observe y(t) + z(t) for unknown z(t)
} How many observations are needed to interpolate y(t)?
} Prior Work: For fixed kernel k, Kernel Ridge Regression with

Õ(stat-dim(k)) observations suffice.
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Spectral Mixture Kernel
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} Introduced in [WA13]; popular in Gaussian Process literature

} It is hard to find good hyperparameters in practice

◦ Many Parameters: one mean, variance, & weight per Gaussian
◦ Is this because we need more observations?
◦ Is this because we need new algorithms?
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} Reduce Kernel Learning to a Sparse Fourier Fitting problem

} Number of Observations needed for learning a Spectral
Mixture Kernel with Q Gaussians is Õ(Q2)

} Learning Spectral Mixture kernels is not statistically difficult
} Techniques generalize to other Stationary Kernels
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