Lessons from Trace Estimation

Testing, Communication, and Anti-Concentration

Raphael A. Meyer (New York University)

Collaborators

Christopher Musco (NYU)

Cameron Musco
(UMass. Amherst)

David P. Woodruff (CMU)

Hutch++: Optimal Stochastic Trace Estimation

Trace Estimation

© Goal: Estimate trace of $n \times n$ matrix \boldsymbol{A} :

$$
\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \boldsymbol{A}_{i j}=\sum_{i=1}^{n} \lambda_{i}
$$

Trace Estimation

© Goal: Estimate trace of $n \times n$ matrix \boldsymbol{A} :

$$
\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \boldsymbol{A}_{i i}=\sum_{i=1}^{n} \lambda_{i}
$$

© In Downstream Applications, \boldsymbol{A} is not stored in memory.
© Instead, \boldsymbol{B} is in memory and $\boldsymbol{A}=f(\boldsymbol{B})$:

No. Triangles $\operatorname{tr}\left(\frac{1}{6} B^{3}\right)$

Estrada Index $\operatorname{tr}\left(e^{\boldsymbol{B}}\right)$

Log-Determinant $\operatorname{tr}(\ln (\boldsymbol{B}))$

Trace Estimation

© Goal: Estimate trace of $n \times n$ matrix \boldsymbol{A} :

$$
\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \boldsymbol{A}_{i i}=\sum_{i=1}^{n} \lambda_{i}
$$

() In Downstream Applications, \boldsymbol{A} is not stored in memory.
() Instead, \boldsymbol{B} is in memory and $\boldsymbol{A}=f(\boldsymbol{B})$:

No. Triangles $\operatorname{tr}\left(\frac{1}{6} B^{3}\right)$

Estrada Index $\operatorname{tr}\left(e^{\boldsymbol{B}}\right)$

Log-Determinant $\operatorname{tr}(\ln (\boldsymbol{B}))$
(0) If $\boldsymbol{A}=f(\boldsymbol{B})$, then we can often compute $\boldsymbol{A} \mathbf{x}$ quickly

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive
© Given access to a $n \times n$ matrix \boldsymbol{A} only through a Matrix-Vector Multiplication Oracle $\mathbf{x} \xrightarrow{\text { input }}$ ORACLE $\xrightarrow{\text { output }} \boldsymbol{A} \mathbf{x}$
© e.g. Krylov Methods, Sketching, Streaming, ...

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive
© Given access to a $n \times n$ matrix \boldsymbol{A} only through a Matrix-Vector Multiplication Oracle

$$
\mathbf{x} \xrightarrow{\text { input }} \text { ORACLE } \xrightarrow{\text { output }} \boldsymbol{A} \mathbf{x}
$$

© e.g. Krylov Methods, Sketching, Streaming, ...

Implicit Matrix Trace Estimation: Estimate $\operatorname{tr}(\boldsymbol{A})$ with as few Matrix-Vector products $\boldsymbol{A x}_{1}, \ldots, \boldsymbol{A} \mathbf{x}_{k}$ as possible.

$$
(1-\varepsilon) \operatorname{tr}(\boldsymbol{A}) \leq \tilde{\operatorname{tr}}(\boldsymbol{A}) \leq(1+\varepsilon) \operatorname{tr}(\boldsymbol{A})
$$

() For constant failure probability, $k=\Theta\left(\frac{1}{\varepsilon}\right)$ queries is optimal

Ideals for Lower Bounds

1. Generalization

- Lower bounds beyond $\operatorname{tr}(\boldsymbol{A})$

Ideals for Lower Bounds

1. Generalization

- Lower bounds beyond $\operatorname{tr}(\boldsymbol{A})$

2. Adaptivity

- Can you use previous MatVec products to pick future ones?

Ideals for Lower Bounds

1. Generalization

- Lower bounds beyond $\operatorname{tr}(\boldsymbol{A})$

2. Adaptivity

- Can you use previous MatVec products to pick future ones?

3. Proof Complexity

- Short proofs are nice.

Ideals for Lower Bounds

1. Generalization

- Lower bounds beyond $\operatorname{tr}(\boldsymbol{A})$

2. Adaptivity

- Can you use previous MatVec products to pick future ones?

3. Proof Complexity

- Short proofs are nice.

4. Interpretable

- What property of the hard distribution over inputs is important?
- Trace estimation is hard for matrices that are nearly rank $-\frac{1}{\varepsilon}$

Communication Complexity

Given an instance of Gap-Hamming,

1. Define a matrix \boldsymbol{A} in terms of \mathbf{x} and \mathbf{y} such that:

- $(1 \pm \varepsilon) \operatorname{tr}(\boldsymbol{A})$ estimation solves Gap-Hamming
- Alice and Bob can compute $\boldsymbol{A} \mathbf{x}$ with $\tilde{O}\left(\frac{1}{\varepsilon}\right)$ bits

2. They can simulate any k-query algorithm with $\tilde{O}\left(\frac{k}{\varepsilon}\right)$ bits
3. They must use $\Omega\left(\frac{1}{\varepsilon^{2}}\right)$ bits, so $k=\tilde{\Omega}\left(\frac{1}{\varepsilon}\right)$

Removing the Algorithm's Agency

© Problem: The user can pick many different query vectors \mathbf{x}.
© If the user had no freedom, we could use statistics to make lower bounds.

Removing the Algorithm's Agency

© Problem: The user can pick many different query vectors \mathbf{x}.
() If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors

Removing the Algorithm's Agency

© Problem: The user can pick many different query vectors \mathbf{x}.
© If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors
2. Let \boldsymbol{G} be a $\mathcal{N}(0,1)$ Gaussian matrix

Let \boldsymbol{Q} be an orthogonal matrix
Then $\boldsymbol{G} \boldsymbol{Q}$ is a $\mathcal{N}(0,1)$ Gaussian matrix

- (informal) If \boldsymbol{A} uses Gaussians, the user WLOG picks the first k standard basis vectors

Removing the Algorithm's Agency

© Problem: The user can pick many different query vectors \mathbf{x}.
() If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors
2. Let \boldsymbol{G} be a $\mathcal{N}(0,1)$ Gaussian matrix

Let \boldsymbol{Q} be an orthogonal matrix
Then $\boldsymbol{G Q}$ is a $\mathcal{N}(0,1)$ Gaussian matrix

- (informal) If \boldsymbol{A} uses Gaussians, the user WLOG picks the first k standard basis vectors
© (informal) WLOG, the user observes the first k columns of \boldsymbol{A}.

Statistical Hypothesis Testing

Non-Adaptive Proof Framework
Design distributions \mathcal{P}_{0} and \mathcal{P}_{1}, for large enough d :

$$
\begin{array}{c|ccc}
\mathcal{P}_{0} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}\right)} \quad \text { Gaussian } \\
\hline \mathcal{P}_{1} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}+1\right)} \text { Gaussian }
\end{array}
$$

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions \mathcal{P}_{0} and \mathcal{P}_{1}, for large enough d :

$$
\begin{array}{c|ccc}
\mathcal{P}_{0} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}\right)} & \text { Gaussian } \\
\hline \mathcal{P}_{1} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}+1\right)} \text { Gaussian }
\end{array}
$$

1. A trace estimator can distinguish \mathcal{P}_{0} from \mathcal{P}_{1}

- If $\boldsymbol{A}_{0} \sim \mathcal{P}_{0}$ and $\boldsymbol{A}_{1} \sim \mathcal{P}_{1}$
- With high probability, $\operatorname{tr}\left(\boldsymbol{A}_{0}\right) \leq(1-2 \varepsilon) \operatorname{tr}\left(\boldsymbol{A}_{1}\right)$

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions \mathcal{P}_{0} and \mathcal{P}_{1}, for large enough d :

$$
\begin{array}{c|ccc}
\mathcal{P}_{0} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}\right)} \quad \text { Gaussian } \\
\hline \mathcal{P}_{1} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}+1\right)} \text { Gaussian }
\end{array}
$$

1. A trace estimator can distinguish \mathcal{P}_{0} from \mathcal{P}_{1}

- If $\boldsymbol{A}_{0} \sim \mathcal{P}_{0}$ and $\boldsymbol{A}_{1} \sim \mathcal{P}_{1}$
- With high probability, $\operatorname{tr}\left(\boldsymbol{A}_{0}\right) \leq(1-2 \varepsilon) \operatorname{tr}\left(\boldsymbol{A}_{1}\right)$

2. No algorithm can distinguish \mathcal{P}_{0} from \mathcal{P}_{1} with $\Omega\left(\frac{1}{\varepsilon}\right)$ queries

- Nature samples $i \sim\{0,1\}$, and $\boldsymbol{A} \sim \mathcal{P}_{i}$
- User access \boldsymbol{A} through the oracle

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions \mathcal{P}_{0} and \mathcal{P}_{1}, for large enough d :

$$
\begin{array}{c|ccc}
\mathcal{P}_{0} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}\right)} \quad \text { Gaussian } \\
\hline \mathcal{P}_{1} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}+1\right)} \text { Gaussian }
\end{array}
$$

1. A trace estimator can distinguish \mathcal{P}_{0} from \mathcal{P}_{1}

- If $\boldsymbol{A}_{0} \sim \mathcal{P}_{0}$ and $\boldsymbol{A}_{1} \sim \mathcal{P}_{1}$
- With high probability, $\operatorname{tr}\left(\boldsymbol{A}_{0}\right) \leq(1-2 \varepsilon) \operatorname{tr}\left(\boldsymbol{A}_{1}\right)$

2. No algorithm can distinguish \mathcal{P}_{0} from \mathcal{P}_{1} with $\Omega\left(\frac{1}{\varepsilon}\right)$ queries

- Nature samples $i \sim\{0,1\}$, and $\boldsymbol{A} \sim \mathcal{P}_{i}$
- User access \boldsymbol{A} through the oracle
- WLOG User picks standard basis vectors

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions \mathcal{P}_{0} and \mathcal{P}_{1}, for large enough d :

$$
\begin{array}{c|ccc}
\mathcal{P}_{0} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}\right)} & \text { Gaussian } \\
\hline \mathcal{P}_{1} & \boldsymbol{A}=\boldsymbol{G}^{T} \boldsymbol{G} & \text { for } \boldsymbol{G} \in \mathbb{R}^{d \times\left(\frac{1}{\varepsilon}+1\right)} \text { Gaussian }
\end{array}
$$

1. A trace estimator can distinguish \mathcal{P}_{0} from \mathcal{P}_{1}

- If $\boldsymbol{A}_{0} \sim \mathcal{P}_{0}$ and $\boldsymbol{A}_{1} \sim \mathcal{P}_{1}$
- With high probability, $\operatorname{tr}\left(\boldsymbol{A}_{0}\right) \leq(1-2 \varepsilon) \operatorname{tr}\left(\boldsymbol{A}_{1}\right)$

2. No algorithm can distinguish \mathcal{P}_{0} from \mathcal{P}_{1} with $\Omega\left(\frac{1}{\varepsilon}\right)$ queries

- Nature samples $i \sim\{0,1\}$, and $\boldsymbol{A} \sim \mathcal{P}_{i}$
- User access \boldsymbol{A} through the oracle
- WLOG User picks standard basis vectors
- Bound Total Variation between first k columns of \boldsymbol{A}_{0} and \boldsymbol{A}_{1}

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)
() Let $\boldsymbol{G} \in \mathbb{R}^{d \times d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
(-) Let $\boldsymbol{A}=\boldsymbol{G}^{\top} \boldsymbol{G}$.
© An algorithm sends query vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$, gets responses $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)
() Let $\boldsymbol{G} \in \mathbb{R}^{d \times d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
(Let $\boldsymbol{A}=\boldsymbol{G}^{\top} \boldsymbol{G}$.
© An algorithm sends query vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$, gets responses $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$
© Then there exists orthogonal matrix \boldsymbol{V} such that

$$
\boldsymbol{V A} \boldsymbol{V}^{\top}=\boldsymbol{\Delta}+\left[\begin{array}{ll}
0 & 0 \\
0 & \tilde{\boldsymbol{A}}
\end{array}\right]
$$

where $\tilde{\boldsymbol{A}} \in \mathbb{R}^{(d-k) \times(d-k)}$ is distributed as $\tilde{A}=\tilde{\boldsymbol{G}}^{\top} \tilde{\boldsymbol{G}}$, conditioned on all observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$
© $\boldsymbol{\Delta}$ is known exactly

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)
() Let $\boldsymbol{G} \in \mathbb{R}^{d \times d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
() Let $\boldsymbol{A}=\boldsymbol{G}^{\top} \boldsymbol{G}$.
© An algorithm sends query vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$, gets responses $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$
© Then there exists orthogonal matrix \boldsymbol{V} such that

$$
\boldsymbol{V A} \boldsymbol{V}^{\top}=\boldsymbol{\Delta}+\left[\begin{array}{ll}
0 & 0 \\
0 & \tilde{\boldsymbol{A}}
\end{array}\right]
$$

where $\tilde{\boldsymbol{A}} \in \mathbb{R}^{(d-k) \times(d-k)}$ is distributed as $\tilde{A}=\tilde{\boldsymbol{G}}^{\top} \tilde{\boldsymbol{G}}$, conditioned on all observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$
© $\boldsymbol{\Delta}$ is known exactly
(© Analogous holds for Wigner Matrices: $\boldsymbol{A}=\frac{1}{2}\left(\boldsymbol{G}+\boldsymbol{G}^{\top}\right)$

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

$$
\text { 1. } \operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})
$$

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{\operatorname { V A V }}{ }^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})$
2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t}:=t-\operatorname{tr}(\boldsymbol{\Delta})$.

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{V A} \boldsymbol{V}^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})$
2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t}:=t-\operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A})=\|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})$
2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t}:=t-\operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A})=\|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$

$$
\circ|t-\operatorname{tr}(\boldsymbol{A})|=|\tilde{t}-\operatorname{tr}(\tilde{\boldsymbol{A}})| \geq \Omega(d-k)
$$

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})$
2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t}:=t-\operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A})=\|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$

$$
\begin{aligned}
& \text { - }|t-\operatorname{tr}(\boldsymbol{A})|=|\tilde{t}-\operatorname{tr}(\tilde{\boldsymbol{A}})| \geq \Omega(d-k) \\
& \text { - } \operatorname{tr}(\boldsymbol{A}) \leq O\left(d^{2}\right)
\end{aligned}
$$

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})$
2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t}:=t-\operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A})=\|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$

$$
\begin{aligned}
& \text { - }|t-\operatorname{tr}(\boldsymbol{A})|=|\tilde{t}-\operatorname{tr}(\tilde{\boldsymbol{A}})| \geq \Omega(d-k) \\
& \circ \operatorname{tr}(\boldsymbol{A}) \leq O\left(d^{2}\right)
\end{aligned}
$$

4. Enforce $|t-\operatorname{tr}(\boldsymbol{A})| \leq \varepsilon \operatorname{tr}(\boldsymbol{A})$

$$
(d-k) \leq \varepsilon \cdot C d^{2}
$$

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{V A} \boldsymbol{V}^{\top}\right)=\operatorname{tr}(\boldsymbol{\Delta})+\operatorname{tr}(\tilde{\boldsymbol{A}})$
2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t}:=t-\operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A})=\|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$

$$
\begin{aligned}
& \text { - }|t-\operatorname{tr}(\boldsymbol{A})|=|\tilde{t}-\operatorname{tr}(\tilde{\boldsymbol{A}})| \geq \Omega(d-k) \\
& \circ \operatorname{tr}(\boldsymbol{A}) \leq O\left(d^{2}\right)
\end{aligned}
$$

4. Enforce $|t-\operatorname{tr}(\boldsymbol{A})| \leq \varepsilon \operatorname{tr}(\boldsymbol{A})$

$$
(d-k) \leq \varepsilon \cdot C d^{2}
$$

5. Set $d=\frac{1}{2 C \varepsilon}$ and simplify: $k \geq \frac{1}{4 C \varepsilon}$

Open Questions

© In progress: Lower bounds for e.g. $\operatorname{tr}\left(\boldsymbol{A}^{3}\right), \operatorname{tr}\left(e^{\boldsymbol{A}}\right), \operatorname{tr}\left(\boldsymbol{A}^{-1}\right)$
© What about inexact oracles? We often approximate $f(\boldsymbol{A}) \mathbf{x}$ with iterative methods. How accurate do these computations need to be?
() Extend to include row/column sampling? This would encapsulate e.g. SGD/SCD.
(0) Memory-limited lower bounds? This is a realistic model for iterative methods.

THANK

