Lessons from Trace Estimation

Testing, Communication, and Anti-Concentration

Raphael A. Meyer (New York University)

Cameron Musco (UMass. Amherst)

David P. Woodruff (CMU)

Hutch++: Optimal Stochastic Trace Estimation

Trace Estimation

• Goal: Estimate trace of $n \times n$ matrix **A**:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \boldsymbol{A}_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

Trace Estimation

• Goal: Estimate trace of $n \times n$ matrix **A**:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \boldsymbol{A}_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

 \odot In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant $tr(\frac{1}{6}B^3)$ $tr(e^B)$ tr(ln(B))

Trace Estimation

• Goal: Estimate trace of $n \times n$ matrix **A**:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \boldsymbol{A}_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

- In Downstream Applications, A is not stored in memory.
- \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

 \odot If $\mathbf{A} = f(\mathbf{B})$, then we can often compute $\mathbf{A}\mathbf{x}$ quickly

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

 Given access to a n × n matrix A only through a Matrix-Vector Multiplication Oracle

$$\mathbf{x} \stackrel{input}{\Longrightarrow} \text{ORACLE} \stackrel{output}{\Longrightarrow} \mathbf{A}\mathbf{x}$$

◎ e.g. Krylov Methods, Sketching, Streaming, ...

Idea: Matrix-Vector Product as a Computational Primitive

 Given access to a n × n matrix A only through a Matrix-Vector Multiplication Oracle

$$\mathbf{x} \stackrel{input}{\Longrightarrow} \text{ORACLE} \stackrel{output}{\Longrightarrow} \mathbf{A}\mathbf{x}$$

- ◎ e.g. Krylov Methods, Sketching, Streaming, ...
- **Implicit Matrix Trace Estimation:** Estimate tr(A) with as few Matrix-Vector products Ax_1, \ldots, Ax_k as possible.

$$(1-\varepsilon)\operatorname{tr}(\boldsymbol{A}) \leq \widetilde{\operatorname{tr}}(\boldsymbol{A}) \leq (1+\varepsilon)\operatorname{tr}(\boldsymbol{A})$$

• For constant failure probability, $k = \Theta(\frac{1}{\epsilon})$ queries is optimal

- 1. Generalization
 - Lower bounds beyond tr(**A**)

- 1. Generalization
 - Lower bounds beyond tr(A)
- 2. Adaptivity
 - $\circ~$ Can you use previous MatVec products to pick future ones?

- 1. Generalization
 - Lower bounds beyond tr(A)
- 2. Adaptivity
 - $\circ~$ Can you use previous MatVec products to pick future ones?
- 3. Proof Complexity
 - Short proofs are nice.

- 1. Generalization
 - Lower bounds beyond tr(A)
- 2. Adaptivity
 - $\circ~$ Can you use previous MatVec products to pick future ones?
- 3. Proof Complexity
 - Short proofs are nice.
- 4. Interpretable
 - What property of the hard distribution over inputs is important?
 - Trace estimation is hard for matrices that are nearly rank- $\frac{1}{\varepsilon}$

Given an instance of Gap-Hamming,

- 1. Define a matrix \boldsymbol{A} in terms of $\mathbf x$ and $\mathbf y$ such that:
 - $\circ~(1\pm\varepsilon)\,{\sf tr}({\pmb A})$ estimation solves Gap-Hamming
 - Alice and Bob can compute Ax with $\tilde{O}(\frac{1}{\varepsilon})$ bits
- 2. They can simulate any k-query algorithm with $\tilde{O}(\frac{k}{\epsilon})$ bits
- 3. They must use $\Omega(\frac{1}{\varepsilon^2})$ bits, so $k = \tilde{\Omega}(\frac{1}{\varepsilon})$

- \odot **Problem:** The user can pick many different query vectors \mathbf{x} .
- If the user had no freedom, we could use statistics to make lower bounds.

- \odot **Problem:** The user can pick many different query vectors $\mathbf{x}.$
- If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors

- \odot **Problem:** The user can pick many different query vectors \mathbf{x} .
- If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

- 1. WLOG, the user submits orthonormal query vectors
- 2. Let \boldsymbol{G} be a $\mathcal{N}(0,1)$ Gaussian matrix Let \boldsymbol{Q} be an orthogonal matrix Then $\boldsymbol{G}\boldsymbol{Q}$ is a $\mathcal{N}(0,1)$ Gaussian matrix
 - (informal) If **A** uses Gaussians, the user WLOG picks the first *k* standard basis vectors

- \odot **Problem:** The user can pick many different query vectors $\mathbf{x}.$
- If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

- 1. WLOG, the user submits orthonormal query vectors
- 2. Let \boldsymbol{G} be a $\mathcal{N}(0,1)$ Gaussian matrix Let \boldsymbol{Q} be an orthogonal matrix Then $\boldsymbol{G}\boldsymbol{Q}$ is a $\mathcal{N}(0,1)$ Gaussian matrix
 - (informal) If A uses Gaussians, the user WLOG picks the first k standard basis vectors

 \odot (informal) WLOG, the user observes the first k columns of **A**.

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough d:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} \quad \text{for} \quad \boldsymbol{G} \in \mathbb{R}^{d \times (\frac{1}{\varepsilon})} \quad \text{Gaussian} \\ \hline \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} \quad \text{for} \quad \boldsymbol{G} \in \mathbb{R}^{d \times (\frac{1}{\varepsilon}+1)} \text{ Gaussian} \end{array}$$

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough d:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times (\frac{1}{\varepsilon})} & \text{Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times (\frac{1}{\varepsilon}+1)} & \text{Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

• If
$$oldsymbol{A}_0 \sim \mathcal{P}_0$$
 and $oldsymbol{A}_1 \sim \mathcal{P}_1$

 $\circ~$ With high probability, ${\sf tr}({\pmb A}_0) \leq (1-2\varepsilon)\,{\sf tr}({\pmb A}_1)$

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough d:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times \left(\frac{1}{\varepsilon}\right)} & \text{Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times \left(\frac{1}{\varepsilon}+1\right)} & \text{Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

 $\circ \ \, \text{If} \ \, \pmb{A}_0 \sim \mathcal{P}_0 \ \, \text{and} \ \, \pmb{A}_1 \sim \mathcal{P}_1 \\$

• With high probability, $tr(\boldsymbol{A}_0) \leq (1-2\varepsilon) tr(\boldsymbol{A}_1)$

- 2. No algorithm can distinguish \mathcal{P}_0 from \mathcal{P}_1 with $\Omega(\frac{1}{\epsilon})$ queries
 - Nature samples $i \sim \{0, 1\}$, and $\mathbf{A} \sim \mathcal{P}_i$
 - User access **A** through the oracle

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough d:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times \left(\frac{1}{\varepsilon}\right)} & \text{Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times \left(\frac{1}{\varepsilon}+1\right)} & \text{Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

 $\circ \ \, \text{If} \ \, \pmb{A}_0 \sim \mathcal{P}_0 \ \, \text{and} \ \, \pmb{A}_1 \sim \mathcal{P}_1 \\$

• With high probability, $tr(\boldsymbol{A}_0) \leq (1-2\varepsilon) tr(\boldsymbol{A}_1)$

- 2. No algorithm can distinguish \mathcal{P}_0 from \mathcal{P}_1 with $\Omega(\frac{1}{\epsilon})$ queries
 - Nature samples $i \sim \{0, 1\}$, and $\boldsymbol{A} \sim \mathcal{P}_i$
 - User access **A** through the oracle
 - WLOG User picks standard basis vectors

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough d:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times \left(\frac{1}{\varepsilon}\right)} & \text{Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^{T}\boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{d \times \left(\frac{1}{\varepsilon}+1\right)} & \text{Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

 $\circ \ \, \text{If} \ \, \pmb{A}_0 \sim \mathcal{P}_0 \ \, \text{and} \ \, \pmb{A}_1 \sim \mathcal{P}_1 \\$

• With high probability, $\mathsf{tr}(\boldsymbol{A}_0) \leq (1-2arepsilon) \mathsf{tr}(\boldsymbol{A}_1)$

2. No algorithm can distinguish \mathcal{P}_0 from \mathcal{P}_1 with $\Omega(\frac{1}{\epsilon})$ queries

• Nature samples $i \sim \{0, 1\}$, and $\boldsymbol{A} \sim \mathcal{P}_i$

- User access **A** through the oracle
- WLOG User picks standard basis vectors
- Bound Total Variation between first k columns of A_0 and A_1

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

- \odot Let $oldsymbol{G} \in \mathbb{R}^{d imes d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
- Let $\boldsymbol{A} = \boldsymbol{G}^{\mathsf{T}} \boldsymbol{G}$.
- An algorithm sends query vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$, gets responses $\mathbf{w}_1, \ldots, \mathbf{w}_k$

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

- \odot Let $\boldsymbol{G} \in \mathbb{R}^{d imes d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
- Let $\boldsymbol{A} = \boldsymbol{G}^{\mathsf{T}} \boldsymbol{G}$.
- An algorithm sends query vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$, gets responses $\mathbf{w}_1, \ldots, \mathbf{w}_k$
- \odot Then there exists orthogonal matrix $oldsymbol{V}$ such that

$$oldsymbol{V}oldsymbol{A}oldsymbol{V}^{\intercal} = oldsymbol{\Delta} + egin{bmatrix} 0 & 0 \ 0 & ilde{oldsymbol{A}} \end{bmatrix}$$

where $\tilde{A} \in \mathbb{R}^{(d-k) \times (d-k)}$ is distributed as $\tilde{A} = \tilde{G}^{\mathsf{T}} \tilde{G}$, conditioned on all observations $\mathbf{x}_1, \ldots, \mathbf{x}_k, \mathbf{w}_1, \ldots, \mathbf{w}_k$

 \odot Δ is known exactly

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

- \odot Let $\boldsymbol{G} \in \mathbb{R}^{d \times d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
- Let $\boldsymbol{A} = \boldsymbol{G}^{\mathsf{T}} \boldsymbol{G}$.
- An algorithm sends query vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$, gets responses $\mathbf{w}_1, \ldots, \mathbf{w}_k$
- \odot Then there exists orthogonal matrix V such that

$$oldsymbol{V}oldsymbol{A}oldsymbol{V}^{\intercal} = oldsymbol{\Delta} + egin{bmatrix} 0 & 0 \ 0 & ilde{oldsymbol{A}} \end{bmatrix}$$

where $\tilde{A} \in \mathbb{R}^{(d-k) \times (d-k)}$ is distributed as $\tilde{A} = \tilde{G}^{\mathsf{T}} \tilde{G}$, conditioned on all observations $\mathbf{x}_1, \ldots, \mathbf{x}_k, \mathbf{w}_1, \ldots, \mathbf{w}_k$

- \odot Δ is known exactly
- Analogous holds for Wigner Matrices: $\mathbf{A} = \frac{1}{2}(\mathbf{G} + \mathbf{G}^{\mathsf{T}})$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\intercal}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

2. Let t estimate $tr(\mathbf{A})$. Define $\tilde{t} := t - tr(\mathbf{\Delta})$.

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V}\!\boldsymbol{A}\boldsymbol{V}^{\intercal}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\widetilde{\boldsymbol{A}})$$

- 2. Let t estimate $tr(\mathbf{A})$. Define $\tilde{t} := t tr(\mathbf{\Delta})$.
- 3. Note tr($m{A}$) = $\|m{G}\|_F^2 \sim \chi_{d^2}^2$ and tr($m{ ilde{A}}$) $\sim \chi_{(d-k)^2}^2$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\intercal}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

- 2. Let t estimate tr(A). Define $\tilde{t} := t tr(\Delta)$.
- 3. Note tr(\boldsymbol{A}) = $\|\boldsymbol{G}\|_F^2 \sim \chi_{d^2}^2$ and tr($\boldsymbol{\tilde{A}}$) $\sim \chi_{(d-k)^2}^2$ $\circ |t - \text{tr}(\boldsymbol{A})| = |\tilde{t} - \text{tr}(\boldsymbol{\tilde{A}})| > \Omega(d-k)$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

- 2. Let t estimate tr(A). Define $\tilde{t} := t tr(\Delta)$.
- 3. Note tr($m{A}$) = $\|m{G}\|_F^2 \sim \chi_{d^2}^2$ and tr($m{ ilde{A}}$) $\sim \chi_{(d-k)^2}^2$

$$egin{array}{ll} \circ & |t-{
m tr}({m A})| = | ilde{t}-{
m tr}(ilde{{m A}})| \geq \Omega(d-k) \ & \circ & {
m tr}({m A}) \leq O(d^2) \end{array}$$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

2. Let t estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t} := t - \operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A}) = \|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$
 $\circ |t - \operatorname{tr}(\boldsymbol{A})| = |\tilde{t} - \operatorname{tr}(\tilde{\boldsymbol{A}})| \ge \Omega(d-k)$
 $\circ \operatorname{tr}(\boldsymbol{A}) \le O(d^{2})$

4. Enforce
$$|t - tr(\mathbf{A})| \le \varepsilon tr(\mathbf{A})$$

 $(d - k) \le \varepsilon \cdot Cd^2$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

2. Let *t* estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t} := t - \operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A}) = \|\boldsymbol{G}\|_F^2 \sim \chi_{d^2}^2$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^2}^2$
 $\circ |t - \operatorname{tr}(\boldsymbol{A})| = |\tilde{t} - \operatorname{tr}(\tilde{\boldsymbol{A}})| \ge \Omega(d-k)$
 $\circ \operatorname{tr}(\boldsymbol{A}) \le O(d^2)$

4. Enforce
$$|t - tr(A)| \le \varepsilon tr(A)$$

 $(d - k) \le \varepsilon \cdot Cd^2$

5. Set $d = \frac{1}{2C\varepsilon}$ and simplify: $k \ge \frac{1}{4C\varepsilon}$

- ◎ In progress: Lower bounds for e.g. $tr(A^3)$, $tr(e^A)$, $tr(A^{-1})$
- What about inexact oracles? We often approximate f(A)x with iterative methods. How accurate do these computations need to be?
- Extend to include row/column sampling? This would encapsulate e.g. SGD/SCD.
- Memory-limited lower bounds? This is a realistic model for iterative methods.

THANK YOU