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© In Downstream Applications, A is not stored in memory.

© Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(%B3) tr(eB) tr(In(B))

© If A= f(B), then we can often compute Ax quickly
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Idea: Matrix-Vector Product as a Computational Primitive

© Given access to a n X n matrix A only through a
Matrix-Vector Multiplication Oracle

input output
2P ORACLE —= Ax

© e.g. Krylov Methods, Sketching, Streaming, ...

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Axj, ..., Ax, as possible.

(1 —e)tr(A) < tr(A) < (1+¢e)tr(A)

© For constant failure probability, k = @(%) queries is optimal
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Ideals for Lower Bounds

1. Generalization
o Lower bounds beyond tr(A)
2. Adaptivity
o Can you use previous MatVec products to pick future ones?
3. Proof Complexity
o Short proofs are nice.
4. Interpretable

o What property of the hard distribution over inputs is

important?
o Trace estimation is hard for matrices that are nearly rank-1

€



Communication Complexity

Given an instance of Gap-Hamming,

1. Define a matrix A in terms of x and y such that:

o (1+£¢€)tr(A) estimation solves Gap-Hamming
o Alice and Bob can compute Ax with O(%) bits

2. They can simulate any k-query algorithm with é(g) bits
3. They must use Q(E%) bits, so k = Q(%)
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Removing the Algorithm’s Agency

© Problem: The user can pick many different query vectors x.

© If the user had no freedom, we could use statistics to make
lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors

2. Let G be a N(0,1) Gaussian matrix
Let @ be an orthogonal matrix
Then GQ is a N'(0,1) Gaussian matrix

o (informal) If A uses Gaussians, the user WLOG picks the first
k standard basis vectors

© (informal) WLOG, the user observes the first k columns of A.
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Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions Py and P4, for large enough d:

Po ‘ A=GTG for G c R  Gaussian
P ‘ A=G'G for G c R Gaussian

1. A trace estimator can distinguish Py from Py
o |fA0N7Do and AlNP1
o With high probability, tr(Ag) < (1 — 2¢) tr(A;)
2. No algorithm can distinguish Py from Py with Q(%) queries
o Nature samples i ~ {0,1}, and A ~ P;
o User access A through the oracle
o WLOG User picks standard basis vectors
o Bound Total Variation between first k columns of Ag and A,
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© Let G € RY*? be a N(0,1) Gaussian Matrix.
© Let A=GTG.

© An algorithm sends query vectors X1, ..., Xk, gets responses

Wi,...,Wg

© Then there exists orthogonal matrix V such that

0 0

VAVT = A ~
- 0 A

where A € R(d=K)x(d=K) is distributed as A = GTG,
conditioned on all observations x1,...,X,, W1,..., Wk

© A is known exactly

© Analogous holds for Wigner Matrices: A = (G + GT)
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Wigner /Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

. tr(A) = tr(VAVT) = tr(A) + tr(A)
2. Let t estimate tr(A). Define t :=t — tr(A).

[y

3. Note tr(A) = ||G||% ~ x?, and tr(A) ~ X{g iy
o [t —tr(A)| = |F —tr(A)| > Q(d — k)
o tr(A) < 0(d?)

4. Enforce |t — tr(A)| < etr(A)

(d— k) < e- Cd?
5. Set d = 5= and simplify: k > ;&



Open Questions

© In progress: Lower bounds for e.g. tr(A3%), tr(e?), tr(A~1)

© What about inexact oracles? We often approximate f(A)x
with iterative methods. How accurate do these computations
need to be?

© Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

© Memory-limited lower bounds? This is a realistic model for

iterative methods.
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