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Trace Estimation

} Goal: Estimate trace of n × n matrix A:

tr(A) =
n∑

i=1

Aii =
n∑

i=1

λi

} In Downstream Applications, A is not stored in memory.

} Instead, B is in memory and A = f (B):

No. Triangles Estrada Index Log-Determinant

tr(16B
3) tr(eB) tr(ln(B))

} If A = f (B), then we can often compute Ax quickly
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Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

} Given access to a n × n matrix A only through a

Matrix-Vector Multiplication Oracle

x
input
===⇒ oracle

output
===⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .

Implicit Matrix Trace Estimation: Estimate tr(A) with as few

Matrix-Vector products Ax1, . . . ,Axk as possible.

(1− ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A)

} For constant failure probability, k = Θ(1ε ) queries is optimal
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Ideals for Lower Bounds

1. Generalization

◦ Lower bounds beyond tr(A)

2. Adaptivity

◦ Can you use previous MatVec products to pick future ones?

3. Proof Complexity

◦ Short proofs are nice.

4. Interpretable

◦ What property of the hard distribution over inputs is

important?

◦ Trace estimation is hard for matrices that are nearly rank- 1ε
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Communication Complexity

Given an instance of Gap-Hamming,

1. Define a matrix A in terms of x and y such that:

◦ (1± ε) tr(A) estimation solves Gap-Hamming

◦ Alice and Bob can compute Ax with Õ( 1
ε ) bits

2. They can simulate any k-query algorithm with Õ(kε ) bits

3. They must use Ω( 1
ε2

) bits, so k = Ω̃(1ε )
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Removing the Algorithm’s Agency

} Problem: The user can pick many different query vectors x.

} If the user had no freedom, we could use statistics to make

lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors

2. Let G be a N (0, 1) Gaussian matrix

Let Q be an orthogonal matrix
Then GQ is a N (0, 1) Gaussian matrix

◦ (informal) If A uses Gaussians, the user WLOG picks the first

k standard basis vectors

} (informal) WLOG, the user observes the first k columns of A.
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Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough d :

P0 A = GTG for G ∈ Rd×( 1
ε
) Gaussian

P1 A = GTG for G ∈ Rd×( 1
ε
+1) Gaussian

1. A trace estimator can distinguish P0 from P1

◦ If A0 ∼ P0 and A1 ∼ P1

◦ With high probability, tr(A0) ≤ (1− 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1ε ) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi

◦ User access A through the oracle

◦ WLOG User picks standard basis vectors

◦ Bound Total Variation between first k columns of A0 and A1
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Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

} Let G ∈ Rd×d be a N (0, 1) Gaussian Matrix.

} Let A = GᵀG .

} An algorithm sends query vectors x1, . . . ,xk , gets responses

w1, . . . ,wk

} Then there exists orthogonal matrix V such that

VAV
ᵀ = ∆ +

[
0 0

0 Ã

]

where Ã ∈ R(d−k)×(d−k) is distributed as Ã = G̃ᵀG̃ ,

conditioned on all observations x1, . . . ,xk ,w1, . . . ,wk

} ∆ is known exactly

} Analogous holds for Wigner Matrices: A = 1
2(G + Gᵀ)

} Has been used for Trace, Max Eigenvalue, Linear Systems,

SVD Lower Bounds
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Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAV ᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).

3. Note tr(A) = ‖G‖2F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |t̃ − tr(Ã)| ≥ Ω(d − k)

◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε
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Open Questions

} In progress: Lower bounds for e.g. tr(A3), tr(eA), tr(A−1)

} What about inexact oracles? We often approximate f (A)x

with iterative methods. How accurate do these computations

need to be?

} Extend to include row/column sampling? This would

encapsulate e.g. SGD/SCD.

} Memory-limited lower bounds? This is a realistic model for

iterative methods.
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