Chebyshev Sampling is Optimal for L_{p} Polynomial Regression

Raphael A. Meyer

New York University
Tandon School of Engineering

Outline of Talk

1) Background

- Problem Statement
- Prior Work
- Open Needs

2 Our Results

- Upper Bounds
- Lower Bounds
(3) Our Techniques
- From Lewis Weights to Jacobi Polynomials
- Plenty not discussed here

Problem Statement

We want to fit a function $f:[-1,1] \rightarrow \mathbb{R}$ with a degree d polynomial \hat{q}.

Problem Statement

We want to fit a function $f:[-1,1] \rightarrow \mathbb{R}$ with a degree d polynomial \hat{q}.
We can observe $f(t)$ at any $t \in[-1,1]$.

Problem Statement

We want to fit a function $f:[-1,1] \rightarrow \mathbb{R}$ with a degree d polynomial \hat{q}.
We can observe $f(t)$ at any $t \in[-1,1]$.
Goal: find polynomial \hat{q} to minimize L_{p} error:

$$
\|f-\hat{q}\|_{p}^{p} \leq(1+\varepsilon) \min _{\operatorname{degree}(q)=d}\|f-\hat{q}\|_{p}^{p}
$$

where $\|f\|_{p}^{p}:=\int_{-1}^{1}|f(t)|^{p} d t$

Problem Statement

We want to fit a function $f:[-1,1] \rightarrow \mathbb{R}$ with a degree d polynomial \hat{q}.
We can observe $f(t)$ at any $t \in[-1,1]$.
Goal: find polynomial \hat{q} to minimize L_{p} error:

$$
\|f-\hat{q}\|_{p}^{p} \leq(1+\varepsilon) \min _{\operatorname{degree}(q)=d}\|f-\hat{q}\|_{p}^{p}
$$

where $\|f\|_{p}^{p}:=\int_{-1}^{1}|f(t)|^{p} d t$

Problem Statement

We want to fit a function $f:[-1,1] \rightarrow \mathbb{R}$ with a degree d polynomial \hat{q}.
We can observe $f(t)$ at any $t \in[-1,1]$.
Goal: find polynomial \hat{q} to minimize L_{p} error:

$$
\|f-\hat{q}\|_{p}^{p} \leq(1+\varepsilon) \min _{\operatorname{degree}(q)=d}\|f-\hat{q}\|_{p}^{p}
$$

where $\|f\|_{p}^{p}:=\int_{-1}^{1}|f(t)|^{p} d t$

Problem Statement

We want to fit a function $f:[-1,1] \rightarrow \mathbb{R}$ with a degree d polynomial \hat{q}.
We can observe $f(t)$ at any $t \in[-1,1]$.
Goal: find polynomial \hat{q} to minimize L_{p} error:

$$
\|f-\hat{q}\|_{p}^{p} \leq(1+\varepsilon) \min _{\operatorname{degree}(q)=d}\|f-\hat{q}\|_{p}^{p}
$$

where $\|f\|_{p}^{p}:=\int_{-1}^{1}|f(t)|^{p} d t$

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

1. How many observations are necessary?

- If f is a degree- d polynomial, $n=\Omega(d)$ is needed
- Larger p needs more observations

2. How should we pick our observations?

- Uniform sampling uses $n=O\left(d^{2}\right)$ queries

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation \hat{q}

Two big questions:

1. How many observations are necessary? Answer: $n=\tilde{O}\left(d p^{4}\right)$ suffices

- If f is a degree- d polynomial, $n=\Omega(d)$ is needed
- Larger p needs more observations

2. How should we pick our observations?

- Uniform sampling uses $n=O\left(d^{2}\right)$ queries

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation \hat{q}

Two big questions:

1. How many observations are necessary? Answer: $n=\tilde{O}\left(d p^{4}\right)$ suffices

- If f is a degree- d polynomial, $n=\Omega(d)$ is needed
- Larger p needs more observations

2. How should we pick our observations? Answer: Chebyshev Sampling

- Uniform sampling uses $n=O\left(d^{2}\right)$ queries

Prior Work

Prior Work ${ }^{1}$ says:
For $p=2, \infty$, draw $n=\tilde{O}(d)$ iid samples with PDF $v(t):=\frac{1}{\pi \sqrt{1-t^{2}}}$
Then solve a Vandermonde matrix ℓ_{p} regression problem.

Prior Work

Prior Work ${ }^{1}$ says:
For $p=2, \infty$, draw $n=\tilde{O}(d)$ iid samples with PDF $v(t):=\frac{1}{\pi \sqrt{1-t^{2}}}$
Then solve a Vandermonde matrix ℓ_{p} regression problem.
We show this works for all $p \geq 1, d \geq 1, \varepsilon>0$
${ }^{1}$ [Price Chen 2019], [Kane Karmalkar Price 2017]

Our Contributions

Given: query access to f, maximum degree d, parameter p

Algorithm Chebyshev sampling for L_{p} polynomial approximation
1: Sample $t_{1}, \ldots, t_{n} \in[-1,1]$ i.i.d. from the pdf $\frac{1}{\pi \sqrt{1-t^{2}}}$
2: Observe queries $b_{i}:=f\left(t_{i}\right)$ for all $i \in[n]$
3: Build A, S with $[\mathbf{A}]_{i, j}=t_{i}^{j-1}$ and $[\mathbf{S}]_{i i}=\left(\frac{d}{n p} \sqrt{1-t_{i}^{2}}\right)^{1 / p}$
4: Compute $\mathbf{x}=\arg \min _{\mathbf{x} \in \mathbb{R}^{d+1}}\|\mathbf{S A x}-\mathbf{S b}\|_{p}$
5: Return $q(t)=\sum_{i=0}^{d} x_{i} t^{i}$

Subtlety: for non-constant $\varepsilon, n=\tilde{O}\left(\frac{d p^{4}}{\varepsilon^{2 p+2}}\right)$, run above algorithm twice

Chebyshev Sampling is Optimal for L_{p} Polynomial Regression

Raphael A. Meyer

New York University
Tandon School of Engineering

Randomized Functional Analysis ${ }^{2}$

Reinterpret the problem as ℓ_{p} regression with an "infinitely tall matrix":

$$
\min _{\operatorname{deg}(q) \leq d}\|q-f\|_{p}=\min _{\mathbf{x} \in \mathbb{R}^{d+1}}\|\mathcal{P} \mathbf{x}-f\|_{p}
$$

"Columns" of \mathcal{P} are monomials, "Rows" of \mathcal{P} are $\left[\begin{array}{lllll}1 & t & t^{2} & \ldots & t^{d}\end{array}\right]$.
Generalize prior work on Row-Sampling for ℓ_{p} Matrix Regression

[^0]
Leverage Function Prior Work for $p=2$

For tall-and-skinny matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, the Leverage Score for Row i is

$$
\tau[\mathbf{A}](i):=\max _{\mathrm{x}} \frac{[\mathbf{A x}]_{i}^{2}}{\|\mathbf{A x}\|_{2}^{2}}
$$

With three key properties:

Leverage Function Prior Work for $p=2$

For tall-and-skinny matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, the Leverage Score for Row i is

$$
\tau[\mathbf{A}](i):=\max _{\mathbf{x}} \frac{[\mathbf{A} \mathbf{x}]_{i}^{2}}{\|\mathbf{A} \mathbf{x}\|_{2}^{2}}
$$

With three key properties:

1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares $(p=2)$ error

Leverage Function Prior Work for $p=2$

For tall-and-skinny matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, the Leverage Score for Row i is

$$
\tau[\mathbf{A}](i):=\max _{\mathbf{x}} \frac{[\mathbf{A} \mathbf{x}]_{i}^{2}}{\|\mathbf{A x}\|_{2}^{2}}
$$

With three key properties:

1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares $(p=2)$ error
2. For any change-of-basis $\mathbf{B} \in \mathbb{R}^{d \times d}$, we have $\tau[\mathbf{A B}](i)=\tau[\mathbf{A}](i)$

Leverage Function Prior Work for $p=2$

For tall-and-skinny matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, the Leverage Score for Row i is

$$
\tau[\mathbf{A}](i):=\max _{\mathbf{x}} \frac{[\mathbf{A} \mathbf{x}]_{i}^{2}}{\|\mathbf{A x}\|_{2}^{2}}
$$

With three key properties:

1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares $(p=2)$ error
2. For any change-of-basis $\mathbf{B} \in \mathbb{R}^{d \times d}$, we have $\tau[\mathbf{A B}](i)=\tau[\mathbf{A}](i)$
3. If \mathbf{A} has orthonormal columns, then $\tau[\mathbf{A}](i)=\left\|\mathbf{a}_{i}\right\|_{2}^{2}$ are row-norms

Leverage Function Prior Work for $p=2$

For tall-and-skinny matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, the Leverage Score for Row i is

$$
\tau[\mathbf{A}](i):=\max _{\mathbf{x}} \frac{[\mathbf{A} \mathbf{x}]_{i}^{2}}{\|\mathbf{A x}\|_{2}^{2}}
$$

With three key properties:

1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares $(p=2)$ error
2. For any change-of-basis $\mathbf{B} \in \mathbb{R}^{d \times d}$, we have $\tau[\mathbf{A B}](i)=\tau[\mathbf{A}](i)$
3. If \mathbf{A} has orthonormal columns, then $\tau[\mathbf{A}](i)=\left\|\mathbf{a}_{i}\right\|_{2}^{2}$ are row-norms

So, for operators instead of matrices,
Define Leverage Function at time t :

$$
\tau[\mathcal{P}](t):=\max _{\mathbf{x}} \frac{(\mathcal{P} \mathbf{x}(t))^{2}}{\|\mathcal{P} \mathbf{x}\|_{2}^{2}}
$$

Which has the same 3 properties

Behold: Orthogonal Polynomials

Question: How can we bound $\tau[\mathcal{P}](t) \leq d \frac{1}{\pi \sqrt{1-t^{2}}}$?

Behold: Orthogonal Polynomials

Question: How can we bound $\tau[\mathcal{P}](t) \leq d \frac{1}{\pi \sqrt{1-t^{2}}}$?
Change the basis of \mathcal{P} to have Legendre Polynomials as columns:

$$
\int_{-1}^{1} L_{i}(t) L_{j}(t) d t=\mathbb{1}_{[i=j]}
$$

Behold: Orthogonal Polynomials

Question: How can we bound $\tau[\mathcal{P}](t) \leq d \frac{1}{\pi \sqrt{1-t^{2}}}$?
Change the basis of \mathcal{P} to have Legendre Polynomials as columns:

$$
\int_{-1}^{1} L_{i}(t) L_{j}(t) d t=\mathbb{1}_{[i=j]}
$$

Then, by Uniform Bounds on Legendre Polynomials [Lorch 1983],

$$
\tau[\mathcal{P}](t)=\sum_{i=0}^{d}\left(L_{i}(t)\right)^{2} \leq 2 d \frac{1}{\pi \sqrt{1-t^{2}}}
$$

Lewis Weights ${ }^{4}$ Now $p \geq 1$

For matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, weights w_{1}, \ldots, w_{n} are $\underline{\ell}_{p}$ Lewis Weights of \mathbf{A} if

$$
\tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i)=w_{i}
$$

where $[\mathbf{W}]_{i i}=w_{i}$ is a diagonal matrix.

Lewis Weights ${ }^{4}$ Now $p \geq 1$

For matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, weights w_{1}, \ldots, w_{n} are $\underline{\ell}_{p}$ Lewis Weights of \mathbf{A} if

$$
\tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i)=w_{i}
$$

where $[\mathbf{W}]_{i i}=w_{i}$ is a diagonal matrix.

1. Guess-and-check definition

3
${ }^{4}$ [Cohen Peng 2015], [Musco et al. 2022]

Lewis Weights ${ }^{4}$ Now $p \geq 1$

For matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, weights w_{1}, \ldots, w_{n} are $\underline{\ell}_{p}$ Lewis Weights of \mathbf{A} if

$$
\tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i)=w_{i}
$$

where $[\mathbf{W}]_{i i}=w_{i}$ is a diagonal matrix.

1. Guess-and-check definition
2. Sampling $\tilde{O}\left(d^{p / 2}\right)$ rows wrt ℓ_{p} Lewis weights preserves ℓ_{p} regression error

Lewis Weights ${ }^{4}$ Now $p \geq 1$

For matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, weights w_{1}, \ldots, w_{n} are $\underline{\ell}_{p}$ Lewis Weights of \mathbf{A} if

$$
\tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i)=w_{i}
$$

where $[\mathbf{W}]_{i i}=w_{i}$ is a diagonal matrix.

1. Guess-and-check definition
2. Sampling $\tilde{O}\left(d p^{2}\right)$ rows wrt ℓ_{p} Lewis weights preserves ℓ_{p} regression error

Lewis Weights ${ }^{4}$ Now $p \geq 1$

For matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, weights w_{1}, \ldots, w_{n} are $\underline{\ell}_{p}$ Lewis Weights of \mathbf{A} if

$$
\tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i)=w_{i}
$$

where $[\mathbf{W}]_{i i}=w_{i}$ is a diagonal matrix.

1. Guess-and-check definition
2. Sampling $\tilde{O}\left(d p^{2}\right)$ rows wrt ℓ_{p} Lewis weights preserves ℓ_{p} regression error

Weaker goalpost: it's enough to sample by w_{1}, \ldots, w_{n} with

$$
\frac{1}{C} w_{i} \leq \tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i) \leq C w_{i} \quad \text { for all } i \in[n]
$$

[^1]
Lewis Weights ${ }^{4}$ Now $p \geq 1$

For matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, weights w_{1}, \ldots, w_{n} are $\underline{\ell}_{p}$ Lewis Weights of \mathbf{A} if

$$
\tau\left[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}} \mathbf{A}\right](i)=w_{i}
$$

where $[\mathbf{W}]_{i i}=w_{i}$ is a diagonal matrix.

1. Guess-and-check definition
2. Sampling $\tilde{O}\left(d p^{2}\right)$ rows wrt ℓ_{p} Lewis weights preserves ℓ_{p} regression error

Weaker goalpost: it's enough to sample by w_{1}, \ldots, w_{n} with

$$
\frac{1}{C} w(t) \leq \tau\left[\mathcal{W}^{\frac{1}{2}-\frac{1}{p}} \mathcal{P}\right](t) \leq C w(t) \quad \text { for all } t \in[-1,1]
$$

[^2]
Behold Orthogonal Polynomials Now $p \geq 1$

Idea: Guess $v(t)=d \frac{1}{\pi \sqrt{1-t^{2}}}$ are Lewis Weights

Behold Orthogonal Polynomials Now $p \geq 1$

Idea: Guess $v(t)=d \frac{1}{\pi \sqrt{1-t^{2}}}$ are Lewis Weights
Change the basis of \mathcal{P} to have Gegenbauer Polynomials as columns:

$$
\int_{-1}^{1} J_{i}^{(\alpha)}(t) J_{j}^{(\alpha)}(t)\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} d t=\mathbb{1}_{[i=j]}
$$

Behold Orthogonal Polynomials Now $p \geq 1$

Idea: Guess $v(t)=d \frac{1}{\pi \sqrt{1-t^{2}}}$ are Lewis Weights
Change the basis of \mathcal{P} to have Gegenbauer Polynomials as columns:

$$
\int_{-1}^{1} J_{i}^{(\alpha)}(t) J_{j}^{(\alpha)}(t)\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} d t=\mathbb{1}_{[i=j]}
$$

Then $\mathcal{V}^{\frac{1}{2}-\frac{1}{p}} \mathcal{P}$ has orthonormal columns, so by [Nevai et al. 1997]

$$
\tau\left[V^{\frac{1}{2}-\frac{1}{p}} \mathcal{P}\right](t)=\left(1-t^{2}\right)^{\frac{1}{p}-\frac{1}{2}} \sum_{i=0}^{d}\left(J_{i}^{(\alpha)}(t)\right)^{2} \leq C d \frac{1}{\pi \sqrt{1-t^{2}}}
$$

We're not done yet

We need to prove $\frac{1}{C} v(t) \leq \tau\left[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}} \mathcal{P}\right](t) \leq C v(t)$ for all $t \in[-1,1]$.

We're not done yet

We need to prove $\frac{1}{C} v(t) \leq \tau\left[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}} \mathcal{P}\right](t) \leq C v(t)$ for all $t \in[-1,1]$.
For $p=1$,

$$
\frac{\tau\left[\mathcal{V}^{-\frac{1}{2}} \mathcal{P}\right](t)}{v(t)}=1+\frac{1-U_{2(d+1)}(t)}{2(d+1)} \rightarrow 0 \quad \text { as } t \rightarrow \pm 1
$$

We're not done yet

Refined Analysis for $t \rightarrow 1$ via "Clipped Chebyshev Measure"

Matrix Guarantees Extend to Operators via
"Two-Stage Sampling"

Summary

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation \hat{q}

Two big questions:

1. How many observations are necessary?

- If f is a degree- d polynomial, $n=\Omega(d)$ is needed
- Larger p needs more observations

2. How should we pick our observations?

- Uniform sampling uses $n=O\left(d^{2}\right)$ queries

Main Analysis that I Presented:

- Define Operator Lewis Weights
- Relate Operator Lewis Weights to Gegenbauer Polynomials
- Prior work relates Gegenbauer Polynomials to Chebyshev measure
- So much not explained here....

Summary

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation \hat{q}

Two big questions:

1. How many observations are necessary? Answer: $n=\tilde{O}\left(d p^{4}\right)$ suffices

- If f is a degree- d polynomial, $n=\Omega(d)$ is needed
- Larger p needs more observations

2. How should we pick our observations?

- Uniform sampling uses $n=O\left(d^{2}\right)$ queries

Main Analysis that I Presented:

- Define Operator Lewis Weights
- Relate Operator Lewis Weights to Gegenbauer Polynomials
- Prior work relates Gegenbauer Polynomials to Chebyshev measure
- So much not explained here....

Summary

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation \hat{q}

Two big questions:

1. How many observations are necessary? Answer: $n=\tilde{O}\left(d p^{4}\right)$ suffices

- If f is a degree- d polynomial, $n=\Omega(d)$ is needed
- Larger p needs more observations

2. How should we pick our observations? Answer: Chebyshev Sampling

- Uniform sampling uses $n=O\left(d^{2}\right)$ queries

Main Analysis that I Presented:

- Define Operator Lewis Weights
- Relate Operator Lewis Weights to Gegenbauer Polynomials
- Prior work relates Gegenbauer Polynomials to Chebyshev measure
- So much not explained here....

[^0]: ${ }^{2}$ [Chen et al. 2016], [Price Chen 2019], [Avron et al. 2019], [Meyer Musco 2020], ...

[^1]: ${ }^{3}$ [Meyer et al 2022]
 ${ }^{4}$ [Cohen Peng 2015], [Musco et al. 2022]

[^2]: ${ }^{3}$ [Meyer et al 2022]
 ${ }^{4}$ [Cohen Peng 2015], [Musco et al. 2022]

