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Problem Statement EINYU| TANDON

We want to fit a function f : [—1, 1] — R with a degree d polynomial .
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The Big Questions ENYU| TANDON

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation ¢

Two big questions:

1. How many observations are necessary?
e If f is a degree-d polynomial, n = Q(d) is needed
e Larger p needs more observations

2. How should we pick our observations?
e Uniform sampling uses n = O(d?) queries
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1. How many observations are necessary? Answer: n = O(dp*) suffices
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2. How should we pick our observations? Answer: Chebyshev Sampling
e Uniform sampling uses n = O(d?) queries

© New York University 4



Prior Work ENYU| TANDON

Chebyshev Measure

™1 —t?

Prior Work' says:

For p = 2, o0, draw n = O(d) iid samples with PDF v(t) := \/ﬁ

Then solve a Vandermonde matrix ¢,, regression problem.

1[Pn’ce Chen 2019], [Kane Karmalkar Price 2017]
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Chebyshev Measure

Prior Work' says:

For p = 2, o0, draw n = O(d) iid samples with PDF v(t) := \/ﬁ

Then solve a Vandermonde matrix ¢,, regression problem.

We show this works forallp > 1,d > 1, > 0
1[Pn’ce Chen 2019], [Kane Karmalkar Price 2017]
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Our Contributions ENYU| TANDON

Given: query access to f, maximum degree d, parameter p

Algorithm Chebyshev sampling for L, polynomial approximation

.. ;
1. Sample t1,...,t, € [—1,1] ii.d. from the pdf T

2: Observe queries b; := f(t;) for all i € [n]
3 Build A, S with [A]; ; = /" and [S]:; = (£ \/1— )"
4: Compute x = arg min, ga+1 [[SAx — Sb||,

5. Return g(t) = S0 it

-y 1 4 . .
Subtlety: for non-constant ¢, n = O(Egﬂgﬁr2 ), run above algorithm twice
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Randomized Functional Analysis? EANYU| TANDON

i€{l,...,d}

1t |2 ... |t

te[-1,1]

P

Reinterpret the problem as 7, regression with an “infinitely tall matrix™:

aoin llg=flle = rmin [Px— fll,
“Columns” of P are monomials, “Rows” of P are [1 ¢ ¢2 t4].

Generalize prior work on Row-Sampling for £, Matrix Regression

2[Chen et al. 2016], [Price Chen 2019], [Avron et al. 2019], [Meyer Musco 2020], ...
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Leverage Function Prior Work for p = 2 ENYU| TANDON

For tall-and-skinny matrix A € R™*<, the Leverage Score for Row i is

With three key properties:
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Leverage Function Prior Work for p = 2 ENYU| TANDON

For tall-and-skinny matrix A € R™*<, the Leverage Score for Row i is

1) := max [AXLZ
TN = me a3

With three key properties:

1. Sampling O(d) from A rows preserves Least-Squares (p = 2) error
2. For any change-of-basis B € R%*¢, we have 7[AB](i) = 7[A](4)
3. If A has orthonormal columns, then 7[A](i) = ||a;||3 are row-norms

So, for operators instead of matrices,

Define Leverage Function at time ¢:

Which has the same 3 properties
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Behold: Orthogonal Polynomials

tel-1,1]

P

Question: How can we bound 7[P](¢) < dw\/ﬁ?

© New York University



EINYU| TANDON

Behold: Orthogonal Polynomials

tel-1,1]

P

Question: How can we bound 7[P](¢) < dw\/ﬁ?

Change the basis of P to have Legendre Polynomials as columns:

/1 Li(t)L;(t) dt = 1y
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Behold: Orthogonal Polynomials

tel-1,1]

P

Question: How can we bound 7[P](¢) < dw\/ﬁ?

Change the basis of P to have Legendre Polynomials as columns:

/1 Li(t)L;(t) dt = 1y

1

Then, by Uniform Bounds on Legendre Polynomials [Lorch 1983],

T[PI(t) = Z(Lq;(t))? <2d ——
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Lewis Weights* Now p > 1 B NYU| TANDON

For matrix A € R"*¢, weights w1, ..., w, are £, Lewis Weights of A if

1

T[W2 "5 Al(5) = ws

where [W];; = w; is a diagonal matrix.

3
4[Cohen Peng 2015], [Musco et al. 2022]
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For matrix A € R"*¢, weights w1, ..., w, are £, Lewis Weights of A if

1

TW2~5 A](3) = w,
where [W];; = w; is a diagonal matrix.

1. Guess-and-check definition

3
4[Cohen Peng 2015], [Musco et al. 2022]
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For matrix A € R"*¢, weights w1, ..., w, are £, Lewis Weights of A if

1

TW2~5 A](3) = w,
where [W];; = w; is a diagonal matrix.

1. Guess-and-check definition
2. Sampling O(d?/?) rows wrt £, Lewis weights preserves ¢, regression error

3[Meyer et al 2622]
4[Cohen Peng 2015], [Musco et al. 2022]
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TW2~5 A](3) = w,
where [W];; = w; is a diagonal matrix.

1. Guess-and-check definition
2. Sampling O(dp?) rows wrt /,, Lewis weights preserves £, regression error

Weaker goalpost: it's enough to sample by w1, ..., w, with
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Behold Orthogonal Polynomials Now p > 1

EINYU| TANDON

te[-1,1]

P

. - 1 . .
Idea: Guess v(t) = dw\/@ are Lewis Weights
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Behold Orthogonal Polynomials Now p > 1

el et e

te[-1,1]

P

. - 1 . .
Idea: Guess v(t) = dm/@ are Lewis Weights

Change the basis of P to have Gegenbauer Polynomials as columns

1
/ JEH) T () (1= 1272 dt = L,y

1

Then V2~ 5P has orthonormal columns, so by [Nevai et al. 1997]
d 1

37p —(1—)5 3 (@) (172 1
VI P P(t) = (1 —t%) 2(4 (t)) Sde —

© New York University
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We need to prove Su(t) < T[Véi%’])]([) < Co(t) forall t € [-1,1].
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We'’'re not done yet EINYU| TANDON

We need to prove Su(t) < T[VéfiP](t) < Co(t) forall t € [-1,1].
Forp =1,

1 — Usza41)(t)

0 t— 1
5+ 1) — ast—
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We'’'re not done yet ENYU| TAND

Refined Analysis for t — 1 via
“Clipped Chebyshev Measure”

t
Subsampled
Linear Operator e Vs =
14 1 (theoretical) e
oy
W Matrix Guarantees Extend to
E Operators via
o w : ”
- T Two-Stage Sampling
A € ROW)xa
PR Ly
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Summary ﬂ NYU| TANDON

Given: query access to f, maximum degree d, parameter p
Return: polynomial approximation §

Two big questions:

1. How many observations are necessary?
e If f is a degree-d polynomial, n = (d) is needed
e Larger p needs more observations

2. How should we pick our observations?
e Uniform sampling uses n = O(d?) queries

Main Analysis that I Presented:

Define Operator Lewis Weights

Relate Operator Lewis Weights to Gegenbauer Polynomials
e Prior work relates Gegenbauer Polynomials to Chebyshev measure

So much not explained here....
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