Chebyshev Sampling is Optimal for L_p Polynomial Regression

Raphael A. Meyer

New York University

Tandon School of Engineering

Background

- Problem Statement
- Prior Work
- Open Needs

2 Our Results

- Upper Bounds
- Lower Bounds

Our Techniques

- From Lewis Weights to Jacobi Polynomials
- Plenty not discussed here

We want to fit a function $f: [-1,1] \to \mathbb{R}$ with a degree d polynomial \hat{q} .

We want to fit a function $f : [-1, 1] \to \mathbb{R}$ with a degree d polynomial \hat{q} . We can observe f(t) at any $t \in [-1, 1]$.

We want to fit a function $f: [-1,1] \to \mathbb{R}$ with a degree d polynomial \hat{q} . We can observe f(t) at any $t \in [-1,1]$.

Goal: find polynomial \hat{q} to minimize L_p error:

$$\|f - \hat{q}\|_p^p \le (1 + \varepsilon) \min_{\operatorname{degree}(q) = d} \|f - \hat{q}\|_p^p$$

where $\|f\|_{p}^{p} := \int_{-1}^{1} |f(t)|^{p} dt$

We want to fit a function $f: [-1,1] \to \mathbb{R}$ with a degree d polynomial \hat{q} . We can observe f(t) at any $t \in [-1,1]$.

Goal: find polynomial \hat{q} to minimize L_p error:

$$\|f - \hat{q}\|_p^p \le (1 + \varepsilon) \min_{\operatorname{degree}(q) = d} \|f - \hat{q}\|_p^p$$

where $||f||_{p}^{p} := \int_{-1}^{1} |f(t)|^{p} dt$

We want to fit a function $f : [-1,1] \to \mathbb{R}$ with a degree d polynomial \hat{q} . We can observe f(t) at any $t \in [-1,1]$.

Goal: find polynomial \hat{q} to minimize L_p error:

$$\|f - \hat{q}\|_p^p \le (1 + \varepsilon) \min_{\operatorname{degree}(q) = d} \|f - \hat{q}\|_p^p$$

where $\|f\|_{p}^{p} := \int_{-1}^{1} |f(t)|^{p} dt$

We want to fit a function $f: [-1,1] \to \mathbb{R}$ with a degree d polynomial \hat{q} . We can observe f(t) at any $t \in [-1,1]$.

Goal: find polynomial \hat{q} to minimize L_p error:

$$\|f - \hat{q}\|_p^p \le (1 + \varepsilon) \min_{\operatorname{degree}(q) = d} \|f - \hat{q}\|_p^p$$

where $\|f\|_{p}^{p} := \int_{-1}^{1} |f(t)|^{p} dt$

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

- 1. How many observations are necessary?
 - If f is a degree-d polynomial, $n = \Omega(d)$ is needed
 - Larger *p* needs more observations
- 2. How should we pick our observations?
 - Uniform sampling uses $n = O(d^2)$ queries

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

- 1. How many observations are necessary? Answer: $n = \tilde{O}(dp^4)$ suffices
 - If f is a degree-d polynomial, $n = \Omega(d)$ is needed
 - Larger p needs more observations
- 2. How should we pick our observations?
 - Uniform sampling uses $n = O(d^2)$ queries

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

- 1. How many observations are necessary? Answer: $n = \tilde{O}(dp^4)$ suffices
 - If f is a degree-d polynomial, $n = \Omega(d)$ is needed
 - Larger p needs more observations
- 2. How should we pick our observations? Answer: Chebyshev Sampling
 - Uniform sampling uses $n = O(d^2)$ queries

Prior Work¹ says:

For $p = 2, \infty$, draw $n = \tilde{O}(d)$ iid samples with PDF $v(t) := \frac{1}{\pi \sqrt{1-t^2}}$ Then solve a Vandermonde matrix ℓ_p regression problem.

¹[Price Chen 2019], [Kane Karmalkar Price 2017]

Prior Work¹ says:

For $p = 2, \infty$, draw $n = \tilde{O}(d)$ iid samples with PDF $v(t) := \frac{1}{\pi \sqrt{1-t^2}}$ Then solve a Vandermonde matrix ℓ_p regression problem.

We show this works for all $p \ge 1$, $d \ge 1$, $\varepsilon > 0$

¹[Price Chen 2019], [Kane Karmalkar Price 2017]

Given: query access to f, maximum degree d, parameter p

Algorithm Chebyshev sampling for L_p polynomial approximation

- 1: Sample $t_1, \ldots, t_n \in [-1, 1]$ i.i.d. from the pdf $\frac{1}{\pi \sqrt{1-t^2}}$
- 2: Observe queries $b_i := f(t_i)$ for all $i \in [n]$
- 3: Build A, S with $[A]_{i,j} = t_i^{j-1}$ and $[S]_{ii} = \left(\frac{d}{np}\sqrt{1-t_i^2}\right)^{1/p}$
- 4: Compute $\mathbf{x} = \arg\min_{\mathbf{x} \in \mathbb{R}^{d+1}} \|\mathbf{SAx} \mathbf{Sb}\|_p$
- 5: Return $q(t) = \sum_{i=0}^{d} x_i t^i$

Subtlety: for non-constant ε , $n = \tilde{O}(\frac{dp^4}{\varepsilon^{2p+2}})$, run above algorithm twice

Chebyshev Sampling is Optimal for L_p Polynomial Regression

Raphael A. Meyer

New York University

Tandon School of Engineering

Reinterpret the problem as ℓ_p regression with an "infinitely tall matrix":

$$\min_{\operatorname{deg}(q) \le d} \|q - f\|_p = \min_{\mathbf{x} \in \mathbb{R}^{d+1}} \|\mathcal{P}\mathbf{x} - f\|_p$$

"Columns" of \mathcal{P} are monomials, "Rows" of \mathcal{P} are $\begin{bmatrix} 1 & t & t^2 & \dots & t^d \end{bmatrix}$.

Generalize prior work on Row-Sampling for ℓ_p Matrix Regression

²[Chen et al. 2016], [Price Chen 2019], [Avron et al. 2019], [Meyer Musco 2020], ...

© New York University

$$\tau[\mathbf{A}](i) := \max_{\mathbf{x}} \frac{[\mathbf{A}\mathbf{x}]_i^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

With three key properties:

$$\tau[\mathbf{A}](i) := \max_{\mathbf{x}} \frac{[\mathbf{A}\mathbf{x}]_i^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

With three key properties:

1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares (p = 2) error

WANDON

$$\tau[\mathbf{A}](i) \coloneqq \max_{\mathbf{x}} \frac{[\mathbf{A}\mathbf{x}]_i^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

With three key properties:

- 1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares (p = 2) error
- 2. For any change-of-basis $\mathbf{B} \in \mathbb{R}^{d \times d}$, we have $\tau[\mathbf{AB}](i) = \tau[\mathbf{A}](i)$

WANDON

$$\tau[\mathbf{A}](i) \coloneqq \max_{\mathbf{x}} \frac{[\mathbf{A}\mathbf{x}]_i^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

With three key properties:

- 1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares (p = 2) error
- 2. For any change-of-basis $\mathbf{B} \in \mathbb{R}^{d \times d}$, we have $\tau[\mathbf{AB}](i) = \tau[\mathbf{A}](i)$
- 3. If ${\bf A}$ has orthonormal columns, then $\tau[{\bf A}](i)=\|{\bf a}_i\|_2^2$ are row-norms

$$\tau[\mathbf{A}](i) \coloneqq \max_{\mathbf{x}} \frac{[\mathbf{A}\mathbf{x}]_i^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

With three key properties:

- 1. Sampling $\tilde{O}(d)$ from A rows preserves Least-Squares (p = 2) error
- 2. For any change-of-basis $\mathbf{B} \in \mathbb{R}^{d \times d}$, we have $\tau[\mathbf{AB}](i) = \tau[\mathbf{A}](i)$
- 3. If A has orthonormal columns, then $\tau[\mathbf{A}](i) = \|\mathbf{a}_i\|_2^2$ are row-norms

So, for operators instead of matrices,

Define Leverage Function at time t:

$$\tau[\mathcal{P}](t) := \max_{\mathbf{x}} \frac{(\mathcal{P}\mathbf{x}(t))^2}{\|\mathcal{P}\mathbf{x}\|_2^2}$$

Which has the same 3 properties

Y NYU TANDON

Behold: Orthogonal Polynomials

Question: How can we bound $\tau[\mathcal{P}](t) \leq d \frac{1}{\pi \sqrt{1-t^2}}$?

🖤 NYU TANDON

Question: How can we bound $\tau[\mathcal{P}](t) \leq d \frac{1}{\pi \sqrt{1-t^2}}$?

Change the basis of \mathcal{P} to have <u>Legendre Polynomials</u> as columns:

$$\int_{-1}^{1} L_i(t) L_j(t) \, dt = \mathbb{1}_{[i=j]}$$

🖤 NYU TANDON

Question: How can we bound $\tau[\mathcal{P}](t) \leq d \frac{1}{\pi \sqrt{1-t^2}}$?

Change the basis of \mathcal{P} to have <u>Legendre Polynomials</u> as columns:

$$\int_{-1}^{1} L_i(t) L_j(t) \, dt = \mathbb{1}_{[i=j]}$$

Then, by Uniform Bounds on Legendre Polynomials [Lorch 1983],

$$\tau[\mathcal{P}](t) = \sum_{i=0}^{d} (L_i(t))^2 \le 2d \ \frac{1}{\pi\sqrt{1-t^2}}$$

🕴 NYU TANDON

$$\tau[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) = w_i$$

where $[\mathbf{W}]_{ii} = w_i$ is a diagonal matrix.

$$\tau[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) = w_i$$

where $[\mathbf{W}]_{ii} = w_i$ is a diagonal matrix.

1. Guess-and-check definition

$$\tau[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) = w_i$$

where $[\mathbf{W}]_{ii} = w_i$ is a diagonal matrix.

- 1. Guess-and-check definition
- 2. Sampling $\tilde{O}(d^{p/2})$ rows wrt ℓ_p Lewis weights preserves ℓ_p regression error

$$\tau[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) = w_i$$

where $[\mathbf{W}]_{ii} = w_i$ is a diagonal matrix.

- 1. Guess-and-check definition
- 2. Sampling $\tilde{O}(dp^2)$ rows wrt ℓ_p Lewis weights preserves ℓ_p regression error

$$\tau[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) = w_i$$

where $[\mathbf{W}]_{ii} = w_i$ is a diagonal matrix.

- 1. Guess-and-check definition
- 2. Sampling $\tilde{O}(dp^2)$ rows wrt ℓ_p Lewis weights preserves ℓ_p regression error

Weaker goalpost: it's enough to sample by w_1, \ldots, w_n with

$$\frac{1}{C}w_i \le \tau [\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) \le C w_i \quad \text{ for all } i \in [n]$$

³[Meyer et al 2022] ⁴[Cohen Peng 2015], [Musco et al. 2022]

$$\tau[\mathbf{W}^{\frac{1}{2}-\frac{1}{p}}\mathbf{A}](i) = w_i$$

where $[\mathbf{W}]_{ii} = w_i$ is a diagonal matrix.

- 1. Guess-and-check definition
- 2. Sampling $\tilde{O}(dp^2)$ rows wrt ℓ_p Lewis weights preserves ℓ_p regression error

Weaker goalpost: it's enough to sample by w_1, \ldots, w_n with

$$\frac{1}{C}w(t) \le \tau[\mathcal{W}^{\frac{1}{2}-\frac{1}{p}}\mathcal{P}](t) \le Cw(t) \quad \text{ for all } t \in [-1,1]$$

³[Meyer et al 2022] ⁴[Cohen Peng 2015], [Musco et al. 2022]

Behold Orthogonal Polynomials Now $p \ge 1$

Idea: Guess $v(t) = d \frac{1}{\pi \sqrt{1-t^2}}$ are Lewis Weights

🖤 NYU TANDON

Behold Orthogonal Polynomials Now $p \ge 1$

Idea: Guess $v(t) = d \frac{1}{\pi \sqrt{1-t^2}}$ are Lewis Weights

Change the basis of \mathcal{P} to have <u>Gegenbauer Polynomials</u> as columns:

$$\int_{-1}^{1} J_{i}^{(\alpha)}(t) J_{j}^{(\alpha)}(t) (1-t^{2})^{\alpha-\frac{1}{2}} dt = \mathbb{1}_{[i=j]}$$

W NYU TANDON

Behold Orthogonal Polynomials Now $p \ge 1$

Idea: Guess $v(t)=d\frac{1}{\pi\sqrt{1-t^2}}$ are Lewis Weights

Change the basis of \mathcal{P} to have <u>Gegenbauer Polynomials</u> as columns:

$$\int_{-1}^{1} J_{i}^{(\alpha)}(t) J_{j}^{(\alpha)}(t) (1-t^{2})^{\alpha-\frac{1}{2}} dt = \mathbb{1}_{[i=j]}$$

Then $\mathcal{V}^{\frac{1}{2}-\frac{1}{p}}\mathcal{P}$ has orthonormal columns, so by [Nevai et al. 1997]

$$\tau[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}}\mathcal{P}](t) = (1-t^2)^{\frac{1}{p}-\frac{1}{2}} \sum_{i=0}^d (J_i^{(\alpha)}(t))^2 \le Cd \frac{1}{\pi\sqrt{1-t^2}}$$

😤 NYU TANDON

We need to prove $\frac{1}{C}v(t) \leq \tau[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}}\mathcal{P}](t) \leq Cv(t)$ for all $t \in [-1,1]$.

We need to prove $\frac{1}{C}v(t) \le \tau[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}}\mathcal{P}](t) \le Cv(t)$ for all $t \in [-1,1]$. For p = 1,

$$\frac{\tau[\mathcal{V}^{-\frac{1}{2}}\mathcal{P}](t)}{v(t)} = 1 + \frac{1 - U_{2(d+1)}(t)}{2(d+1)} \to 0 \qquad \text{as } t \to \pm 1$$

Refined Analysis for $t \to 1$ via "Clipped Chebyshev Measure"

Matrix Guarantees Extend to Operators via "Two-Stage Sampling"

🌪 NYU TANDON

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

- 1. How many observations are necessary?
 - If f is a degree-d polynomial, $n = \Omega(d)$ is needed
 - Larger p needs more observations
- 2. How should we pick our observations?
 - Uniform sampling uses $n = O(d^2)$ queries

Main Analysis that I Presented:

- Define Operator Lewis Weights
- Relate Operator Lewis Weights to Gegenbauer Polynomials
- Prior work relates Gegenbauer Polynomials to Chebyshev measure
- So much not explained here....

🌾 NYU TANDON

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

- 1. How many observations are necessary? Answer: $n = \tilde{O}(dp^4)$ suffices
 - If f is a degree-d polynomial, $n = \Omega(d)$ is needed
 - Larger p needs more observations
- 2. How should we pick our observations?
 - Uniform sampling uses $n = O(d^2)$ queries

Main Analysis that I Presented:

- Define Operator Lewis Weights
- Relate Operator Lewis Weights to Gegenbauer Polynomials
- Prior work relates Gegenbauer Polynomials to Chebyshev measure
- So much not explained here....

🌾 NYU TANDON

Given: query access to f, maximum degree d, parameter p Return: polynomial approximation \hat{q}

Two big questions:

- 1. How many observations are necessary? Answer: $n = \tilde{O}(dp^4)$ suffices
 - If f is a degree-d polynomial, $n = \Omega(d)$ is needed
 - Larger p needs more observations
- 2. How should we pick our observations? Answer: Chebyshev Sampling
 - Uniform sampling uses $n = O(d^2)$ queries

Main Analysis that I Presented:

- Define Operator Lewis Weights
- Relate Operator Lewis Weights to Gegenbauer Polynomials
- Prior work relates Gegenbauer Polynomials to Chebyshev measure
- So much not explained here....