
Chebyshev Sampling is Optimal

for Lp Polynomial Regression

Raphael A. Meyer

New York University

Tandon School of Engineering



Outline of Talk

1 Background

Problem Statement

Prior Work

Open Needs

2 Our Results

Upper Bounds

Lower Bounds

3 Our Techniques

From Lewis Weights to Jacobi Polynomials

Plenty not discussed here

© New York University 2



Problem Statement

−1 1
0

f

t

We want to fit a function f : [−1, 1] → R with a degree d polynomial q̂.

We can observe f(t) at any t ∈ [−1, 1].

Goal: find polynomial q̂ to minimize Lp error:

‖f − q̂‖pp ≤ (1 + ε) min
degree(q)=d

‖f − q̂‖pp

where ‖f‖pp :=
∫ 1

−1
|f(t)|pdt
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The Big Questions

Given: query access to f , maximum degree d, parameter p
Return: polynomial approximation q̂

Two big questions:

1. How many observations are necessary?

Answer: n = Õ(dp4) suffices

• If f is a degree-d polynomial, n = Ω(d) is needed
• Larger p needs more observations

2. How should we pick our observations?

Answer: Chebyshev Sampling

• Uniform sampling uses n = O(d2) queries
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Prior Work
1
says:

For p = 2,∞, draw n = Õ(d) iid samples with PDF v(t) := 1

π
√

1−t2

Then solve a Vandermonde matrix `p regression problem.

We show this works for all p ≥ 1, d ≥ 1, ε > 0

1
[Price Chen 2019], [Kane Karmalkar Price 2017]
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For p = 2,∞, draw n = Õ(d) iid samples with PDF v(t) := 1

π
√

1−t2

Then solve a Vandermonde matrix `p regression problem.

We show this works for all p ≥ 1, d ≥ 1, ε > 0

1
[Price Chen 2019], [Kane Karmalkar Price 2017]

© New York University 5



Our Contributions

Given: query access to f , maximum degree d, parameter p

Algorithm Chebyshev sampling for Lp polynomial approximation

1: Sample t1, . . . , tn ∈ [−1, 1] i.i.d. from the pdf 1

π
√

1−t2

2: Observe queries bi := f(ti) for all i ∈ [n]

3: Build A, S with [A]i,j = tj−1
i and [S]ii =

(
d
np

√
1− t2i

)1/p
4: Compute x = arg minx∈Rd+1 ‖SAx − Sb‖p
5: Return q(t) =

∑d
i=0 xit

i

Subtlety: for non-constant ε, n = Õ( dp4

ε2p+2 ), run above algorithm twice
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Randomized Functional Analysis2

t
∈
[−

1,
1
]

i ∈ {1, . . . , d}

1 t t2 · · · td

x f

P

−

Reinterpret the problem as `p regression with an “infinitely tall matrix”:

min
deg(q)≤d

‖q − f‖p = min
x∈Rd+1

‖Px − f‖p

“Columns” of P are monomials, “Rows” of P are [1 t t2 . . . td].

Generalize prior work on Row-Sampling for `p Matrix Regression

2
[Chen et al. 2016], [Price Chen 2019], [Avron et al. 2019], [Meyer Musco 2020], ...
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Leverage Function Prior Work for p = 2

For tall-and-skinny matrix A ∈ Rn×d
, the Leverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row iLeverage Score for Row i is

τ [A](i) := max
x

[Ax]2i
‖Ax‖22

With three key properties:

1. Sampling Õ(d) from A rows preserves Least-Squares (p = 2) error

2. For any change-of-basis B ∈ Rd×d
, we have τ [AB](i) = τ [A](i)

3. If A has orthonormal columns, then τ [A](i) = ‖ai‖22 are row-norms

So, for operators instead of matrices,

Define Leverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time tLeverage Function at time t:

τ [P](t) := max
x

(Px(t))2

‖Px‖22
Which has the same 3 properties
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Behold: Orthogonal Polynomials

t
∈
[−

1,
1]

i ∈ {1, . . . , d}

1 t t2 · · · td

x f

P

−

Question: How can we bound τ [P](t) ≤ d 1

π
√

1−t2
?

Change the basis of P to have Legendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre PolynomialsLegendre Polynomials as columns:∫ 1

−1

Li(t)Lj(t) dt = 1[i=j]

Then, by Uniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre PolynomialsUniform Bounds on Legendre Polynomials [Lorch 1983],

τ [P](t) =

d∑
i=0

(Li(t))
2 ≤ 2d

1

π
√
1− t2
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Lewis Weights4 Now p ≥ 1

For matrix A ∈ Rn×d
, weights w1, . . . , wn are `p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A`p Lewis Weights of A if

τ [W
1
2
− 1

p A](i) = wi

where [W]ii = wi is a diagonal matrix.

1. Guess-and-check definition

2. Sampling rows wrt `p Lewis weights preserves `p regression error

Weaker goalpost: it’s enough to sample by w1, . . . , wn with

1

C
wi ≤ τ [W

1
2
− 1

p A](i) ≤ C wi for all i ∈ [n]

3

[Meyer et al 2022]

4
[Cohen Peng 2015], [Musco et al. 2022]
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Behold Orthogonal Polynomials Now p ≥ 1

t
∈
[−

1,
1]

i ∈ {1, . . . , d}

1 t t2 · · · td

x f

P

−

Idea: Guess v(t) = d 1

π
√

1−t2
are Lewis Weights

Change the basis of P to have Gegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer PolynomialsGegenbauer Polynomials as columns:∫ 1
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(α)
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j (t) (1− t2)α− 1

2 dt = 1[i=j]

Then V
1
2
− 1

pP has orthonormal columns, so by [Nevai et al. 1997]

τ [V
1
2
− 1

pP](t) = (1− t2)
1
p
− 1

2

d∑
i=0

(J
(α)
i (t))2 ≤ Cd

1

π
√
1− t2
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Behold Orthogonal Polynomials Now p ≥ 1

t
∈
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1,
1]

i ∈ {1, . . . , d}

J
(α)
0 J

(α)
1 J

(α)
2 · · · J

(α)
d

x f
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π
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We’re not done yet

-1 1(1− 1
d2
)−(1− 1

d2
)

0

v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)

τ [V−1/2P](t)

t

We need to prove 1
C
v(t) ≤ τ [V

1
2
− 1

pP](t) ≤ C v(t) for all t ∈ [−1, 1].

For p = 1,

τ [V− 1
2P](t)

v(t)
= 1 +

1− U2(d+1)(t)

2(d+ 1)
→ 0 as t → ±1
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We’re not done yet

1(1− 1
d2
)0.5

w(t)

τ [W1/2−1/pP](t)

q(t)

O(d2)

t

Refined Analysis for t → 1 via
“Clipped Chebyshev Measure”

t
∈
[−

1,
1]

P : Rd → L2

SA ∈ RÕ(d)×d

A ∈ RÕ(d5)×d

Linear Operator Vandermonde
Matrix

Subsampled
Vandermonde

Matrix

Sampling:
Uniform

Sampling:
Lewis Weight

1 t t2 · · · td
(theoretical)

1 t t2 · · · td

1 t t2 · · · td Matrix Guarantees Extend to

Operators via

“Two-Stage Sampling”
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Summary

Given: query access to f , maximum degree d, parameter p
Return: polynomial approximation q̂

Two big questions:

1. How many observations are necessary?

Answer: n = Õ(dp4) suffices

• If f is a degree-d polynomial, n = Ω(d) is needed
• Larger p needs more observations

2. How should we pick our observations?

Answer: Chebyshev Sampling

• Uniform sampling uses n = O(d2) queries

Main Analysis that I Presented:

• Define Operator Lewis Weights

• Relate Operator Lewis Weights to Gegenbauer Polynomials

• Prior work relates Gegenbauer Polynomials to Chebyshev measure

• So much not explained here....
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