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Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk
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Formal Problem Statement

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Ax1, . . . ,Axm as possible.

(1 − ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A) w.p. 1 − δ
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Our Contributions

For PSD matrix trace estimation,

} Hutch++ algorithm, which uses Õ(1
ε ) matrix-vector products.

◦ Improves prior rate of Õ( 1
ε2 )

◦ Empirically works well
◦ Matching Ω( 1

ε ) Lower Bound

Only 5 lines of code:

1Õ notation only hide logarithmic dependence on the failure probability.
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Hutch++ Intuition

Idea: Hutchinson’s Estimator is very efficient unless A is almost
low-rank.

1. Find a good rank-k approximation Ãk

2. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
3. Return Hutch++(A) = tr(Ãk) + T̃
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THANK
YOU

Code available at
github.com/RaphaelArkadyMeyerNYU/hutchplusplus

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

