Hutch++

Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron Musco (University of Massachusetts Amherst), and David P. Woodruff (Carnegie Mellon University)

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\mathsf{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

◎ In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

◎ In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

Computing A = ¹/₆B³ takes O(n³) time
Computing Ax = ¹/₆B(B(Bx)) takes O(n²) time
If A = f(B), then we can often compute Ax quickly

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

- ◎ In Downstream Applications, **A** is not stored in memory.
- \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

- Computing $\mathbf{A} = \frac{1}{6}\mathbf{B}^3$ takes $O(n^3)$ time
- Computing $Ax = \frac{1}{6}B(B(Bx))$ takes $O(n^2)$ time
- \odot If $\mathbf{A} = f(\mathbf{B})$, then we can often compute $\mathbf{A}\mathbf{x}$ quickly
- \odot Goal: Estimate tr(**A**) by computing $\mathbf{A}\mathbf{x}_1, \dots \mathbf{A}\mathbf{x}_k$

Implicit Matrix Trace Estimation: Estimate tr(A) with as few Matrix-Vector products Ax_1, \ldots, Ax_m as possible.

$$(1 - \varepsilon) \operatorname{tr}(\boldsymbol{A}) \leq \widetilde{\operatorname{tr}}(\boldsymbol{A}) \leq (1 + \varepsilon) \operatorname{tr}(\boldsymbol{A})$$
 w.p. $1 - \delta$

Our Contributions

For PSD matrix trace estimation,

- Hutch++ algorithm, which uses $\tilde{O}(\frac{1}{\varepsilon})$ matrix-vector products.
 - Improves prior rate of $\tilde{O}(\frac{1}{\epsilon^2})$
 - Empirically works well
 - Matching $\Omega(\frac{1}{\epsilon})$ Lower Bound

Only 5 lines of code:

 $^{{}^1 \}tilde{O}$ notation only hide logarithmic dependence on the failure probability.

Hutch++ Intuition

Idea: Hutchinson's Estimator is **very** efficient unless **A** is almost low-rank.

Hutch++ Intuition

Idea: Hutchinson's Estimator is **very** efficient unless **A** is almost low-rank.

- 1. Find a good rank-k approximation \tilde{A}_k
- 2. Compute $\tilde{T} \approx tr(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$ with *m* steps of Hutchinson's
- 3. Return Hutch++(\boldsymbol{A}) = tr($\tilde{\boldsymbol{A}}_k$) + \tilde{T}

THANK YOU

Code available at github.com/RaphaelArkadyMeyerNYU/hutchplusplus