
Hutch++

Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron
Musco (University of Massachusetts Amherst), and David P.
Woodruff (Carnegie Mellon University)

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk

1

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk

1

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

1

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk

1

Formal Problem Statement

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Ax1, . . . ,Axm as possible.

(1 − ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A) w.p. 1 − δ

2

Our Contributions

For PSD matrix trace estimation,

} Hutch++ algorithm, which uses Õ(1
ε) matrix-vector products.

◦ Improves prior rate of Õ(1
ε2)

◦ Empirically works well
◦ Matching Ω(1

ε) Lower Bound

Only 5 lines of code:

1Õ notation only hide logarithmic dependence on the failure probability.

3

Hutch++ Intuition

Idea: Hutchinson’s Estimator is very efficient unless A is almost
low-rank.

1. Find a good rank-k approximation Ãk

2. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
3. Return Hutch++(A) = tr(Ãk) + T̃

4

Hutch++ Intuition

Idea: Hutchinson’s Estimator is very efficient unless A is almost
low-rank.

1. Find a good rank-k approximation Ãk

2. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
3. Return Hutch++(A) = tr(Ãk) + T̃

4

THANK
YOU

Code available at
github.com/RaphaelArkadyMeyerNYU/hutchplusplus

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

