Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron Musco (University of Massachusetts Amherst), and David P. Woodruff (Carnegie Mellon University)

1. Introduction

- What problems am I solving?
- Why are these problems interesting?
- How am I solving them?
- 2. Trace Estimation (SOSA 2021)
- 3. Trace Monomial Estimation (Ongoing Research)

- Scientific Computing relies on Numerical Linear Algebra
- We spent decades building better algorithms

- Scientific Computing relies on Numerical Linear Algebra
- We spent decades building better algorithms
- We don't know which algorithms are optimal
 - Krylov Iteration is optimal for top eigenvalue
 - Hutchinson's Estimator is suboptimal for trace estimation

- ◎ Scientific Computing relies on Numerical Linear Algebra
- We spent decades building better algorithms
- We don't know which algorithms are optimal
 - Krylov Iteration is optimal for top eigenvalue
 - $\circ~$ Hutchinson's Estimator is suboptimal for trace estimation
- My goal: Prove the optimality of linear algebra algorithms
 - Emphasis on building lower bounds

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\mathsf{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

◎ In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

- ◎ In Downstream Applications, **A** is not stored in memory.
- \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

Computing A = ¹/₆B³ takes O(n³) time
Computing Ax = ¹/₆B(B(Bx)) takes O(n²) time
If A = f(B), then we can often compute Ax quickly

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

- ◎ In Downstream Applications, **A** is not stored in memory.
- \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

- Computing A = ¹/₆B³ takes O(n³) time
 Computing Ax = ¹/₆B(B(Bx)) takes O(n²) time
- \odot If $\mathbf{A} = f(\mathbf{B})$, then we can often compute $\mathbf{A}\mathbf{x}$ quickly
- \odot Goal: Estimate tr(**A**) by computing $\mathbf{A}\mathbf{x}_1, \dots \mathbf{A}\mathbf{x}_k$

Formally: Matrix-Vector Product as a Computational Primitive

Matrix-Vector Oracle Model

Formally: Matrix-Vector Product as a Computational Primitive

 Given access to a d × d matrix A only through a Matrix-Vector Multiplication Oracle

$$\mathbf{x} \stackrel{input}{\Longrightarrow} \text{ORACLE} \stackrel{output}{\Longrightarrow} \mathbf{A}\mathbf{x}$$

- $\odot\,$ e.g. Krylov Methods, Sketching, Streaming, \ldots
- Very few existing lower bounds

Matrix-Vector Oracle Model

Formally: Matrix-Vector Product as a Computational Primitive

 Given access to a d × d matrix A only through a Matrix-Vector Multiplication Oracle

$$\mathbf{x} \stackrel{input}{\Longrightarrow} \text{ORACLE} \stackrel{output}{\Longrightarrow} \mathbf{A}\mathbf{x}$$

 $\odot\,$ e.g. Krylov Methods, Sketching, Streaming, \ldots

• Very few existing lower bounds

Trace Estimation: Estimate tr(A) with as few Matrix-Vector products Ax_1, \ldots, Ax_k as possible.

 $|\tilde{\operatorname{tr}}(\boldsymbol{A}) - \operatorname{tr}(\boldsymbol{A})| \leq \varepsilon \operatorname{tr}(\boldsymbol{A})$

Prior Work:

- Hutchinson's Estimator: $O(\frac{1}{\varepsilon^2})$ products suffice [AT11]
 - 2 Lines of MATLAB code

Our Results:

- Hutch++ Estimator: $O(\frac{1}{\varepsilon})$ products suffice • 5 Lines of MATLAB code
- Lower Bound: Any estimator needs $\Omega(\frac{1}{\varepsilon})$ products

- \odot Symmetric $oldsymbol{A} \in \mathbb{R}^{d imes d}$ has $oldsymbol{A} = oldsymbol{U} \Lambda oldsymbol{U}^{\intercal}$
- **U** is a rotation matrix: $U^{\mathsf{T}}U = I$
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$

- Symmetric $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ has $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{T}}$
- **U** is a rotation matrix: $U^{\mathsf{T}}U = I$
- Eigenvalues $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_d$
- \odot tr(\boldsymbol{A}) = $\sum_{i} \boldsymbol{A}_{i,i} = \sum_{i} \lambda_{i}$

- \odot Symmetric $oldsymbol{A} \in \mathbb{R}^{d imes d}$ has $oldsymbol{A} = oldsymbol{U} \Lambda oldsymbol{U}^{\intercal}$
- **U** is a rotation matrix: $U^{\mathsf{T}}U = I$
- Eigenvalues $λ_1 ≥ λ_2 ≥ ... ≥ λ_d$

$$\|\boldsymbol{A}\|_{F}^{2} = \sum_{i,j} \boldsymbol{A}_{i,j}^{2} = \sum_{i} \lambda_{i}^{2}$$

$$\odot$$
 tr(\boldsymbol{A}) = $\sum_{i} \boldsymbol{A}_{i,i} = \sum_{i} \lambda_{i}$

◎ Positive Semi-Definite (PSD) **A** has $\lambda_i \ge 0$ for all *i*

$$\circ \|\boldsymbol{A}\|_{\boldsymbol{F}} = \|\boldsymbol{\lambda}\|_2 \le \|\boldsymbol{\lambda}\|_1 = \mathsf{tr}(\boldsymbol{A})$$

- \odot Symmetric $oldsymbol{A} \in \mathbb{R}^{d imes d}$ has $oldsymbol{A} = oldsymbol{U} \Lambda oldsymbol{U}^{\intercal}$
- **U** is a rotation matrix: $U^{\mathsf{T}}U = I$
- Eigenvalues $λ_1 ≥ λ_2 ≥ ... ≥ λ_d$

$$\|\mathbf{A}\|_F^2 = \sum_{i,j} \mathbf{A}_{i,j}^2 = \sum_i \lambda_i^2$$

$$\odot$$
 tr(**A**) = $\sum_{i} \mathbf{A}_{i,i} = \sum_{i} \lambda_{i}$

○ Positive Semi-Definite (PSD) **A** has $\lambda_i \ge 0$ for all *i*

$$\circ \|\boldsymbol{A}\|_{F} = \|\boldsymbol{\lambda}\|_{2} \leq \|\boldsymbol{\lambda}\|_{1} = \mathsf{tr}(\boldsymbol{A})$$

• Low Rank Approximation:

$$oldsymbol{A}_k = oldsymbol{U}_k oldsymbol{\Lambda}_k oldsymbol{U}_k^{\intercal} = ext{argmin}_{\textit{rank}(oldsymbol{B}) = k} \|oldsymbol{A} - oldsymbol{B}\|_F$$

- \odot If $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{\textit{I}})$, then $\mathbf{\textit{A}}\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{\textit{A}}\mathbf{\textit{A}}^\intercal)$
- ◎ If $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$, then $S := \sum_i X_i^2 \sim \chi_n^2$, $\mathbb{E}[S] = n$, Var[S] = 2n

- \odot If $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, then $\mathbf{A}\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\intercal})$
- (a) If $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$, then $S := \sum_i X_i^2 \sim \chi_n^2$, $\mathbb{E}[S] = n$, $\operatorname{Var}[S] = 2n$
- ⊙ Chebyshev's Ineq: $|X \mathbb{E}[X]| \le \frac{1}{\sqrt{\delta}} \sqrt{Var[X]}$ w.p. $\ge 1 \delta$

- \odot If $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{\textit{I}})$, then $\mathbf{A}\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\intercal})$
- (a) If $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$, then $S := \sum_i X_i^2 \sim \chi_n^2$, $\mathbb{E}[S] = n$, $\operatorname{Var}[S] = 2n$
- ◎ Chebyshev's Ineq: $|X \mathbb{E}[X]| \le \frac{1}{\sqrt{\delta}} \sqrt{Var[X]}$ w.p. $\ge 1 \delta$
- ⊚ Chebyshev's Ineq: $|X \mathbb{E}[X]| \le O(\sqrt{Var[X]})$ w.p. $\ge \frac{2}{3}$

Towards Optimal

Trace Estimation in the

Matrix-Vector Oracle Model

◎ If
$$\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$$
, then

$$\mathbb{E}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = \mathsf{tr}(\mathbf{A}) \qquad \qquad \mathsf{Var}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = 2 \|\mathbf{A}\|_{F}^{2}$$

⊙ If x ~ N(0, I), then
$$\mathbb{E}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = \mathsf{tr}(\mathbf{A}) \qquad \qquad \mathsf{Var}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = 2\|\mathbf{A}\|_{F}^{2}$$

Mutchinson's Estimator: H_ℓ(**A**) := ¹/_ℓ ∑^ℓ_{i=1} **x**^T_i **Ax**_i
 E[H_ℓ(**A**)] = tr(**A**) Var[H_ℓ(**A**)] = ²/_ℓ ||**A**||²_F

Hutchinson's Estimator: H_ℓ(**A**) := ¹/_ℓ ∑^ℓ_{i=1} **x**^T_i **Ax**_i
 E[H_ℓ(**A**)] = tr(**A**) Var[H_ℓ(**A**)] = ²/_ℓ ||**A**||²_F

Proof: $H_{\ell}(\mathbf{A})$ needs $\ell = O(\frac{1}{\epsilon^2})$ for PSD \mathbf{A}

◎ For PSD **A**, we have $\|\mathbf{A}\|_{F} \leq tr(\mathbf{A})$, so that

⊙ If x ~ N(0, I), then
$$\mathbb{E}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = tr(\mathbf{A}) \qquad \quad \text{Var}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = 2\|\mathbf{A}\|_{F}^{2}$$

Hutchinson's Estimator: H_ℓ(**A**) := ¹/_ℓ ∑^ℓ_{i=1} **x**^T_i **Ax**_i
 E[H_ℓ(**A**)] = tr(**A**) Var[H_ℓ(**A**)] = ²/_ℓ ||**A**||²_F

Proof: $H_{\ell}(\mathbf{A})$ needs $\ell = O(\frac{1}{\epsilon^2})$ for PSD \mathbf{A}

⊙ For PSD **A**, we have $\|A\|_F \leq tr(A)$, so that

$$\begin{split} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A})| &\leq O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_{F} \qquad (\mathsf{Chebyshev Ineq.}) \\ &\leq O(\frac{1}{\sqrt{\ell}}) \operatorname{tr}(\boldsymbol{A}) \qquad (\|\boldsymbol{A}\|_{F} \leq \mathsf{tr}(\boldsymbol{A})) \\ &= \varepsilon \operatorname{tr}(\boldsymbol{A}) \qquad (\ell = O(\frac{1}{\varepsilon^{2}})) \end{split}$$

For what **A** is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(oldsymbol{A}) - \mathsf{tr}(oldsymbol{A})| &\leq O(rac{1}{\sqrt{\ell}}) \|oldsymbol{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \,\mathsf{tr}(oldsymbol{A}) \ &= arepsilon \,\mathsf{tr}(oldsymbol{A}) \end{aligned}$$

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_\ell(oldsymbol{A}) - \mathsf{tr}(oldsymbol{A})| &pprox O(rac{1}{\sqrt{\ell}}) \|oldsymbol{A}\|_F\ &\leq O(rac{1}{\sqrt{\ell}}) \,\mathsf{tr}(oldsymbol{A})\ &= arepsilon \,\mathsf{tr}(oldsymbol{A}) \end{aligned}$$

For what **A** is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \operatorname{tr}(\boldsymbol{A}) \ &= arepsilon \operatorname{tr}(\boldsymbol{A}) \end{aligned}$$

• When is the bound $\|\boldsymbol{A}\|_{F} \leq \operatorname{tr}(A)$ tight?

For what **A** is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathrm{tr}(\boldsymbol{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \,\mathrm{tr}(\boldsymbol{A}) \ &= arepsilon \,\mathrm{tr}(\boldsymbol{A}) \end{aligned}$$

When is the bound ||**A**||_F ≤ tr(A) tight?
Let **v** = [λ₁ ... λ_n] be the eigenvalues of PSD **A**

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(oldsymbol{A}) - \mathsf{tr}(oldsymbol{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|oldsymbol{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \operatorname{tr}(oldsymbol{A}) \ &= arepsilon \operatorname{tr}(oldsymbol{A}) \end{aligned}$$

When is the bound ||**A**||_F ≤ tr(A) tight?
Let **v** = [λ₁ ... λ_n] be the eigenvalues of PSD **A**When is the bound ||**v**||₂ ≤ ||**v**||₁ tight?

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(oldsymbol{A}) - \mathsf{tr}(oldsymbol{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|oldsymbol{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \operatorname{tr}(oldsymbol{A}) \ &= arepsilon \operatorname{tr}(oldsymbol{A}) \end{aligned}$$

When is the bound ||**A**||_F ≤ tr(A) tight?
Let v = [λ₁ ... λ_n] be the eigenvalues of PSD **A**When is the bound ||v||₂ ≤ ||v||₁ tight?
Property of norms: ||v||₂ ≈ ||v||₁ only if v is nearly sparse

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(oldsymbol{A}) - \mathsf{tr}(oldsymbol{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|oldsymbol{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \operatorname{tr}(oldsymbol{A}) \ &= arepsilon \operatorname{tr}(oldsymbol{A}) \end{aligned}$$

- When is the bound $\|\boldsymbol{A}\|_F \leq \operatorname{tr}(A)$ tight?
- \odot Let $\mathbf{v} = \begin{bmatrix} \lambda_1 & \dots & \lambda_n \end{bmatrix}$ be the eigenvalues of PSD **A**
- \odot When is the bound $\|\mathbf{v}\|_2 \le \|\mathbf{v}\|_1$ tight?

 $\circ~$ Property of norms: $\|\mathbf{v}\|_2\approx\|\mathbf{v}\|_1$ only if \mathbf{v} is nearly sparse

Hutchinson only requires O(¹/_{ε²}) queries if **A** has a few large eigenvalues

Helping Hutchinson's Estimator

Idea: Explicitly estimate the top few eigenvalues of **A**. Use Hutchinson's for the rest.

Helping Hutchinson's Estimator

Idea: Explicitly estimate the top few eigenvalues of **A**. Use Hutchinson's for the rest.

- 1. Find a good rank-k approximation \tilde{A}_k
- 2. Notice that $tr(\boldsymbol{A}) = tr(\tilde{\boldsymbol{A}}_k) + tr(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$
- 3. Compute $tr(\tilde{\boldsymbol{A}}_k)$ exactly
- 4. Return Hutch++(\boldsymbol{A}) = tr($\tilde{\boldsymbol{A}}_k$) + H_{ℓ}($\boldsymbol{A} \tilde{\boldsymbol{A}}_k$)

Helping Hutchinson's Estimator

Idea: Explicitly estimate the top few eigenvalues of **A**. Use Hutchinson's for the rest.

- 1. Find a good rank-k approximation \tilde{A}_k
- 2. Notice that $tr(\boldsymbol{A}) = tr(\tilde{\boldsymbol{A}}_k) + tr(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$
- 3. Compute $tr(\tilde{\boldsymbol{A}}_k)$ exactly
- 4. Return Hutch⁺⁺(\boldsymbol{A}) = tr($\tilde{\boldsymbol{A}}_k$) + H_{ℓ}($\boldsymbol{A} \tilde{\boldsymbol{A}}_k$)

If
$$k = \ell = O(\frac{1}{\varepsilon})$$
, then $|\text{Hutch}++(A) - \text{tr}(A)| \le \varepsilon \text{tr}(A)$.
(Whiteboard)

11

Finding a Good Low-Rank Approximation

Let A_k be the best rank-k approximation of A.

Lemma [Sar06, Woo14]

Let $\boldsymbol{S} \in \mathbb{R}^{d \times k}$ have i.i.d. uniform ± 1 entries, $\boldsymbol{Q} = \operatorname{orth}(\boldsymbol{AS})$, and $\tilde{\boldsymbol{A}}_k = \boldsymbol{A} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}}$. Then, with probability $1 - \delta$,

$$\|oldsymbol{A} - \widetilde{oldsymbol{A}}_k\|_F \le 2\|oldsymbol{A} - oldsymbol{A}_k\|_F$$

so long as **S** has $m = O(k + \log(1/\delta))$ columns.

Finding a Good Low-Rank Approximation

Let A_k be the best rank-k approximation of A.

Lemma [Sar06, Woo14]

Let $\boldsymbol{S} \in \mathbb{R}^{d \times k}$ have i.i.d. uniform ± 1 entries, $\boldsymbol{Q} = \operatorname{orth}(\boldsymbol{AS})$, and $\tilde{\boldsymbol{A}}_k = \boldsymbol{A} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}}$. Then, with probability $1 - \delta$,

$$\|\boldsymbol{A} - \tilde{\boldsymbol{A}}_k\|_F \leq 2\|\boldsymbol{A} - \boldsymbol{A}_k\|_F$$

so long as \boldsymbol{S} has $m = O(k + \log(1/\delta))$ columns.

We can compute the trace of \tilde{A}_k with *m* queries and O(mn) space:

$$\operatorname{tr}(\tilde{\boldsymbol{A}}_k) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{Q}\boldsymbol{Q}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{Q}^{\mathsf{T}}(\boldsymbol{A}\boldsymbol{Q}))$$

Hutch++ Algorithm:

- \odot Input: Number of matrix-vector queries *m*, matrix **A**
- 1. Sample $\pmb{S} \in \mathbb{R}^{d imes \frac{m}{3}}$ and $\pmb{G} \in \mathbb{R}^{d imes \frac{m}{3}}$ with i.i.d. $\mathcal{N}(0, \pmb{I})$ entries
- 2. Compute $\boldsymbol{Q} = qr(\boldsymbol{AS})$
- 3. Return tr($\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q}$) + $\frac{3}{m}$ tr($\boldsymbol{G}^T (\boldsymbol{I} \boldsymbol{Q} \boldsymbol{Q}^T) \boldsymbol{A} (\boldsymbol{I} \boldsymbol{Q} \boldsymbol{Q}^T) \boldsymbol{G}$)

Hutch++ Algorithm:

 \odot Input: Number of matrix-vector queries *m*, matrix **A**

- 1. Sample $\pmb{S} \in \mathbb{R}^{d imes \frac{m}{3}}$ and $\pmb{G} \in \mathbb{R}^{d imes \frac{m}{3}}$ with i.i.d. $\mathcal{N}(0, \pmb{I})$ entries
- 2. Compute $\boldsymbol{Q} = qr(\boldsymbol{AS})$
- 3. Return tr($\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q}$) + $\frac{3}{m}$ tr($\boldsymbol{G}^T (\boldsymbol{I} \boldsymbol{Q} \boldsymbol{Q}^T) \boldsymbol{A} (\boldsymbol{I} \boldsymbol{Q} \boldsymbol{Q}^T) \boldsymbol{G}$)

This algorithm is adaptive:

Hutch++ Algorithm:

 \odot Input: Number of matrix-vector queries *m*, matrix **A**

- 1. Sample $\pmb{S} \in \mathbb{R}^{d imes \frac{m}{3}}$ and $\pmb{G} \in \mathbb{R}^{d imes \frac{m}{3}}$ with i.i.d. $\mathcal{N}(0, \pmb{I})$ entries
- 2. Compute $\boldsymbol{Q} = qr(\boldsymbol{AS})$
- 3. Return tr($\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q}$) + $\frac{3}{m}$ tr($\boldsymbol{G}^T (\boldsymbol{I} \boldsymbol{Q} \boldsymbol{Q}^T) \boldsymbol{A} (\boldsymbol{I} \boldsymbol{Q} \boldsymbol{Q}^T) \boldsymbol{G}$)

This algorithm is adaptive:

$$\mathbf{x}_{k+1} \longrightarrow \text{ORACLE} \longrightarrow \mathbf{A} \mathbf{x}_k$$

There is a **non-adaptive** variant of Hutch++:

Experiments

When $\|\mathbf{A}\|_F \approx tr(\mathbf{A})$, Hutch++ is much faster than H_ℓ :

14

Trace Estimation Lower Bounds

$$\mathbf{x} \xrightarrow{input} \text{ORACLE} \xrightarrow{output} \mathbf{A}\mathbf{x}$$

View oracle as a limit on information about **A**:

- 1. Suppose $\textbf{\textit{A}}\sim\mathcal{D}$ is a random matrix
- 2. Then tr(A) is a random variable with variance
- If an algorithm computes few queries, it has little information about tr(A)
- 4. Then the algorithm cannot predict $tr(\mathbf{A})$ well

$$\mathbf{x} \xrightarrow{input} \text{ORACLE} \xrightarrow{output} \mathbf{A}\mathbf{x}$$

View oracle as a limit on information about **A**:

- 1. Suppose $\textbf{\textit{A}}\sim\mathcal{D}$ is a random matrix
- 2. Then tr(A) is a random variable with variance
- If an algorithm computes few queries, it has little information about tr(A)
- 4. Then the algorithm cannot predict $tr(\mathbf{A})$ well

- \odot **Problem:** The user can pick many different query vectors \mathbf{x} .
- If the user had no freedom, we could use statistics to make lower bounds.

- \odot **Problem:** The user can pick many different query vectors **x**.
- If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors

- \odot **Problem:** The user can pick many different query vectors \mathbf{x} .
- If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

- 1. WLOG, the user submits orthonormal query vectors
- 2. Let \boldsymbol{G} be a $\mathcal{N}(0,1)$ Gaussian matrix Let \boldsymbol{Q} be an orthogonal matrix Then $\boldsymbol{G}\boldsymbol{Q}$ is a $\mathcal{N}(0,1)$ Gaussian matrix
 - (informal) If **A** uses Gaussians, the responses from the oracle are independent of the queries submitted.

- \odot **Problem:** The user can pick many different query vectors \mathbf{x} .
- If the user had no freedom, we could use statistics to make lower bounds.

Two Observations:

- 1. WLOG, the user submits orthonormal query vectors
- 2. Let \boldsymbol{G} be a $\mathcal{N}(0,1)$ Gaussian matrix Let \boldsymbol{Q} be an orthogonal matrix Then $\boldsymbol{G}\boldsymbol{Q}$ is a $\mathcal{N}(0,1)$ Gaussian matrix
 - (informal) If **A** uses Gaussians, the responses from the oracle are independent of the queries submitted.
- \odot (informal) WLOG, the user observes the first *k* columns of **A**.

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

- \odot Let $\boldsymbol{G} \in \mathbb{R}^{d \times d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
- Let $\mathbf{A} = \mathbf{G}^{\mathsf{T}}\mathbf{G}$ be a Wishart Matrix.
- An algorithm sends query vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$, gets responses $\mathbf{w}_1, \ldots, \mathbf{w}_k$

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

- \odot Let $\boldsymbol{G} \in \mathbb{R}^{d imes d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
- Let $\mathbf{A} = \mathbf{G}^{\mathsf{T}}\mathbf{G}$ be a Wishart Matrix.
- An algorithm sends query vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$, gets responses $\mathbf{w}_1, \ldots, \mathbf{w}_k$
- \odot Then there exists orthogonal matrix $oldsymbol{V}$ such that

$$oldsymbol{V}oldsymbol{A}oldsymbol{V}^{\intercal} = oldsymbol{\Delta} + egin{bmatrix} 0 & 0 \ 0 & oldsymbol{ ilde{A}} \end{bmatrix}$$

where $\tilde{\boldsymbol{A}} \in \mathbb{R}^{(d-k) \times (d-k)}$ is distributed as $\tilde{\boldsymbol{A}} = \tilde{\boldsymbol{G}}^{\mathsf{T}} \tilde{\boldsymbol{G}}$, conditioned on all observations $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{w}_1, \dots, \mathbf{w}_k$

 \odot Δ is known exactly

Wigner/Wishart Anti-Concentration Method

Theorem (Wishart Case)

- \odot Let $\boldsymbol{G} \in \mathbb{R}^{d \times d}$ be a $\mathcal{N}(0,1)$ Gaussian Matrix.
- Let $\mathbf{A} = \mathbf{G}^{\mathsf{T}}\mathbf{G}$ be a Wishart Matrix.
- An algorithm sends query vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$, gets responses $\mathbf{w}_1, \ldots, \mathbf{w}_k$
- \odot Then there exists orthogonal matrix $oldsymbol{V}$ such that

$$oldsymbol{V}oldsymbol{A}oldsymbol{V}^{\intercal} = oldsymbol{\Delta} + egin{bmatrix} 0 & 0 \ 0 & oldsymbol{ ilde{A}} \end{bmatrix}$$

where $\tilde{\boldsymbol{A}} \in \mathbb{R}^{(d-k) \times (d-k)}$ is distributed as $\tilde{\boldsymbol{A}} = \tilde{\boldsymbol{G}}^{\mathsf{T}} \tilde{\boldsymbol{G}}$, conditioned on all observations $\mathbf{x}_1, \ldots, \mathbf{x}_k, \mathbf{w}_1, \ldots, \mathbf{w}_k$

- \odot Δ is known exactly
- Analogous holds for Wigner Matrices: $\mathbf{A} = \frac{1}{2}(\mathbf{G} + \mathbf{G}^{\mathsf{T}})$

1.
$$tr(\mathbf{A}) = tr(\mathbf{VAV}^{T}) = tr(\Delta) + tr(\tilde{\mathbf{A}})$$

1.
$$tr(\boldsymbol{A}) = tr(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = tr(\boldsymbol{\Delta}) + tr(\tilde{\boldsymbol{A}})$$

2. Let t estimate tr(**A**). Define $\tilde{t} := t - tr(\Delta)$.

1.
$$tr(\boldsymbol{A}) = tr(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = tr(\boldsymbol{\Delta}) + tr(\tilde{\boldsymbol{A}})$$

- 2. Let t estimate $tr(\mathbf{A})$. Define $\tilde{t} := t tr(\mathbf{\Delta})$.
- 3. Note tr(\boldsymbol{A}) = $\|\boldsymbol{G}\|_F^2 \sim \chi_{d^2}^2$ and tr($\tilde{\boldsymbol{A}}$) $\sim \chi_{(d-k)^2}^2$

1.
$$tr(\boldsymbol{A}) = tr(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = tr(\boldsymbol{\Delta}) + tr(\tilde{\boldsymbol{A}})$$

- 2. Let t estimate tr(**A**). Define $\tilde{t} := t tr(\Delta)$.
- 3. Note $\operatorname{tr}(\boldsymbol{A}) = \|\boldsymbol{G}\|_F^2 \sim \chi_{d^2}^2$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^2}^2$ $\circ |t - \operatorname{tr}(\boldsymbol{A})| = |\tilde{t} - \operatorname{tr}(\tilde{\boldsymbol{A}})| \ge \Omega(d-k)$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V} \boldsymbol{A} \boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

- 2. Let t estimate $tr(\mathbf{A})$. Define $\tilde{t} := t tr(\mathbf{\Delta})$.
- 3. Note tr(\boldsymbol{A}) = $\|\boldsymbol{G}\|_F^2 \sim \chi_{d^2}^2$ and tr($\tilde{\boldsymbol{A}}$) $\sim \chi_{(d-k)^2}^2$

$$\begin{array}{l} \circ \ |t - \operatorname{tr}(\boldsymbol{A})| = |\tilde{t} - \operatorname{tr}(\tilde{\boldsymbol{A}})| \geq \Omega(d - k) \\ \circ \ \operatorname{tr}(\boldsymbol{A}) \leq O(d^2) \end{array}$$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

2. Let *t* estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t} := t - \operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A}) = \|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$
 $\circ |t - \operatorname{tr}(\boldsymbol{A})| = |\tilde{t} - \operatorname{tr}(\tilde{\boldsymbol{A}})| \ge \Omega(d-k)$
 $\circ \operatorname{tr}(\boldsymbol{A}) \le O(d^{2})$

4. Enforce $|t - tr(\mathbf{A})| \le \varepsilon tr(\mathbf{A})$ $(d - k) \le \varepsilon \cdot Cd^2$

1.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{V}\boldsymbol{A}\boldsymbol{V}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{\Delta}) + \operatorname{tr}(\tilde{\boldsymbol{A}})$$

2. Let *t* estimate $\operatorname{tr}(\boldsymbol{A})$. Define $\tilde{t} := t - \operatorname{tr}(\boldsymbol{\Delta})$.
3. Note $\operatorname{tr}(\boldsymbol{A}) = \|\boldsymbol{G}\|_{F}^{2} \sim \chi_{d^{2}}^{2}$ and $\operatorname{tr}(\tilde{\boldsymbol{A}}) \sim \chi_{(d-k)^{2}}^{2}$
 $\circ |t - \operatorname{tr}(\boldsymbol{A})| = |\tilde{t} - \operatorname{tr}(\tilde{\boldsymbol{A}})| \ge \Omega(d-k)$
 $\circ \operatorname{tr}(\boldsymbol{A}) \le O(d^{2})$

4. Enforce $|t - tr(A)| \le \varepsilon tr(A)$ $(d - k) \le \varepsilon \cdot Cd^2$

5. Set $d = \frac{1}{2C\varepsilon}$ and simplify: $k \ge \frac{1}{4C\varepsilon}$

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough *n*:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} \quad \text{for} \quad \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}\right) \quad \times d} \text{ Gaussian} \\ \hline \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} \quad \text{for} \quad \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}+1\right) \times d} \text{ Gaussian} \end{array}$$

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough *n*:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}\right)} & \times^d \text{ Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}+1\right) \times d} \text{ Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

• If
$$oldsymbol{A}_0\sim\mathcal{P}_0$$
 and $oldsymbol{A}_1\sim\mathcal{P}_1$

 $\circ~$ With high probability, ${\sf tr}({\pmb A}_0) \leq (1-2\varepsilon) \, {\sf tr}({\pmb A}_1)$

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough *n*:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}\right) & \times d} \text{ Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}+1\right) \times d} \text{ Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

 $\circ \ \, \text{If} \ \, \pmb{A}_0 \sim \mathcal{P}_0 \ \, \text{and} \ \, \pmb{A}_1 \sim \mathcal{P}_1 \\$

 $\circ~$ With high probability, ${\sf tr}({\boldsymbol{A}}_0) \leq (1-2\varepsilon)\,{\sf tr}({\boldsymbol{A}}_1)$

- 2. No algorithm can distinguish \mathcal{P}_0 from \mathcal{P}_1 with $\Omega(\frac{1}{\epsilon})$ queries
 - Nature samples $i \sim \{0, 1\}$, and $\boldsymbol{A} \sim \mathcal{P}_i$
 - User access **A** through the oracle

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough *n*:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}\right) & \times d} \text{ Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}+1\right) \times d} \text{ Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

 $\circ \ \, \text{If} \ \, \pmb{A}_0 \sim \mathcal{P}_0 \ \, \text{and} \ \, \pmb{A}_1 \sim \mathcal{P}_1 \\$

 $\circ~$ With high probability, ${\sf tr}({\boldsymbol{A}}_0) \leq (1-2\varepsilon)\,{\sf tr}({\boldsymbol{A}}_1)$

2. No algorithm can distinguish \mathcal{P}_0 from \mathcal{P}_1 with $\Omega(\frac{1}{\epsilon})$ queries

- Nature samples $i \sim \{0,1\}$, and $oldsymbol{A} \sim \mathcal{P}_i$
- User access **A** through the oracle
- WLOG User picks standard basis vectors

Design distributions \mathcal{P}_0 and \mathcal{P}_1 , for large enough *n*:

$$\begin{array}{c|c} \mathcal{P}_0 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}\right) & \times d} \text{ Gaussian} \\ \end{array} \\ \mathcal{P}_1 & \boldsymbol{A} = \boldsymbol{G}^T \boldsymbol{G} & \text{for} & \boldsymbol{G} \in \mathbb{R}^{\left(\frac{1}{\varepsilon}+1\right) \times d} \text{ Gaussian} \end{array}$$

1. A trace estimator can distinguish \mathcal{P}_0 from \mathcal{P}_1

 $\circ \ \, \text{If} \ \, \pmb{A}_0 \sim \mathcal{P}_0 \ \, \text{and} \ \, \pmb{A}_1 \sim \mathcal{P}_1 \\$

- With high probability, $\mathsf{tr}(\boldsymbol{A}_0) \leq (1-2arepsilon) \mathsf{tr}(\boldsymbol{A}_1)$
- 2. No algorithm can distinguish \mathcal{P}_0 from \mathcal{P}_1 with $\Omega(\frac{1}{\epsilon})$ queries
 - Nature samples $i \sim \{0, 1\}$, and $\boldsymbol{A} \sim \mathcal{P}_i$
 - User access **A** through the oracle
 - WLOG User picks standard basis vectors
 - Bound Total Variation between first k columns of A_0 and A_1

- 1. Introduced Hutchinson's Estimator for PSD \boldsymbol{A}
- 2. Improved it: Hutch++ uses $O(\frac{1}{\varepsilon})$
- 3. Two lower bounds: Adaptive & Non-Adaptive require $\Omega(\frac{1}{\epsilon})$
- 4. Trace Estimation requires $\Theta(\frac{1}{\varepsilon})$ queries

- When is adaptivity helpful?
- What about inexact oracles? We often approximate f(A)x with iterative methods. How accurate do these computations need to be?
- Extend to include row/column sampling? This would encapsulate e.g. SGD/SCD.
- Memory-limited lower bounds? This is a realistic model for iterative methods.

THANK YOU

Haim Avron and Sivan Toledo.

Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix.

<u>Journal of the ACM</u>, 58(2), 2011.

Improved approximation algorithms for large matrices via random projections.

In <u>Proceedings of the 47th Annual IEEE Symposium on</u> <u>Foundations of Computer Science (FOCS)</u>, pages 143–152, 2006.

- David P. Woodruff.

Sketching as a tool for numerical linear algebra.

Foundations and Trends in Theoretical Computer Science, 10(1–2):1–157, 2014.

🔋 Karl Wimmer, Yi Wu, and Peng Zhang.

Optimal query complexity for estimating the trace of a matrix.

In Proceedings of the 41st International Colloquium on

Automata, Languages and Programming (ICALP), pages 1051–1062. 2014.