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Overview

1. Introduction
◦ What problems am I solving?
◦ Why are these problems interesting?
◦ How am I solving them?

2. Trace Estimation (SOSA 2021)
3. Trace Monomial Estimation (Ongoing Research)
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Numerical Linear Algebra

} Scientific Computing relies on Numerical Linear Algebra
} We spent decades building better algorithms

} We don’t know which algorithms are optimal
◦ Krylov Iteration is optimal for top eigenvalue
◦ Hutchinson’s Estimator is suboptimal for trace estimation

} My goal: Prove the optimality of linear algebra algorithms
◦ Emphasis on building lower bounds
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Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk
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Matrix-Vector Oracle Model

Formally: Matrix-Vector Product as a Computational Primitive

} Given access to a d × d matrix A only through a
Matrix-Vector Multiplication Oracle

x input
==⇒ oracle output

===⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .
} Very few existing lower bounds

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)
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Our Contributions

Prior Work:

} Hutchinson’s Estimator: O( 1
ε2 ) products suffice [AT11]

◦ 2 Lines of MATLAB code

} Lower Bound: Hutchinson’s Estimator needs Ω( 1
ε2 ) products

[WWZ14]

Our Results:

} Hutch++ Estimator: O(1
ε ) products suffice

◦ 5 Lines of MATLAB code

} Lower Bound: Any estimator needs Ω(1
ε ) products
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Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ∥A∥2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi

} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ∥A∥F = ∥λ∥2 ≤ ∥λ∥1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ∥A − B∥F
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Probability Review

} If x ∼ N (0, I), then Ax ∼ N (0,AAᵀ)

} If X1, . . . ,Xn ∼ N (0, 1), then S :=
∑

i X2
i ∼ χ2

n, E[S] = n,
Var[S] = 2n

} Chebyshev’s Ineq: |X − E[X]| ≤ 1√
δ

√
Var[X] w.p. ≥ 1 − δ

} Chebyshev’s Ineq: |X − E[X]| ≤ O(
√

Var[X]) w.p. ≥ 2
3
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Towards Optimal

Trace Estimation in the

Matrix-Vector Oracle Model



Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2∥A∥2
F

} Hutchinson’s Estimator: Hℓ(A) := 1
ℓ

∑ℓ
i=1 xᵀ

i Axi

E[Hℓ(A)] = tr(A) Var[Hℓ(A)] = 2
ℓ∥A∥2

F

Proof: Hℓ(A) needs ℓ = O( 1
ε2 ) for PSD A

} For PSD A, we have ∥A∥F ≤ tr(A), so that

|Hℓ(A)− tr(A)| ≤ O( 1√
ℓ
)∥A∥F (Chebyshev Ineq.)

≤ O( 1√
ℓ
) tr(A) (∥A∥F ≤ tr(A))

= ε tr(A) (ℓ = O( 1
ε2 ))
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Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≤O( 1√
ℓ
)∥A∥F

≤O( 1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues
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Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + Hℓ(A − Ãk)

If k = ℓ = O(1
ε ), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)
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Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.

Lemma [Sar06, Woo14]
Let S ∈ Rd×k have i.i.d. uniform ±1 entries, Q = orth(AS), and
Ãk = AQQᵀ. Then, with probability 1 − δ,

∥A − Ãk∥F ≤ 2∥A − Ak∥F

so long as S has m = O(k + log(1/δ)) columns.

We can compute the trace of Ãk with m queries and O(mn) space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))
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Hutch++

Hutch++ Algorithm:
} Input: Number of matrix-vector queries m, matrix A
1. Sample S ∈ Rd×m

3 and G ∈ Rd×m
3 with i.i.d. N (0, I) entries

2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 3

m tr(GT(I − QQᵀ)A(I − QQᵀ)G)

This algorithm is adaptive:
xk+1 Axkoracle

algorithm

There is a non-adaptive variant of Hutch++:

algorithm

{x1, . . . ,xm} oracle {Ax1, . . . ,Axm}

algorithm
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Experiments

When ∥A∥F ≈ tr(A), Hutch++ is much faster than Hℓ:

Fast Eig. Decay Slow Eig. Decay
Decay Plot.pdf Decay Plot.bb

101 102 103
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R
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(a) ∥A∥F = 0.63 tr(A)

Decay Rate.pdf Decay Rate.bb
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(b) ∥A∥F = 0.02 tr(A)
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Trace Estimation Lower Bounds



Super Rough Intuition

x input
==⇒ oracle output

===⇒ Ax

View oracle as a limit on information about A:

1. Suppose A ∼ D is a random matrix
2. Then tr(A) is a random variable with variance
3. If an algorithm computes few queries, it has little information

about tr(A)

4. Then the algorithm cannot predict tr(A) well

16
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Removing the Algorithm’s Agency

} Problem: The user can pick many different query vectors x.
} If the user had no freedom, we could use statistics to make

lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors
2. Let G be a N (0, 1) Gaussian matrix

Let Q be an orthogonal matrix
Then GQ is a N (0, 1) Gaussian matrix

◦ (informal) If A uses Gaussians, the responses from the oracle
are independent of the queries submitted.

} (informal) WLOG, the user observes the first k columns of A.

17
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Wigner/Wishart Anti-Concentration Method
Theorem (Wishart Case)
} Let G ∈ Rd×d be a N (0, 1) Gaussian Matrix.
} Let A = GᵀG be a Wishart Matrix.
} An algorithm sends query vectors x1, . . . ,xk, gets responses

w1, . . . ,wk

} Then there exists orthogonal matrix V such that

VAVᵀ = ∆+

[
0 0
0 Ã

]

where Ã ∈ R(d−k)×(d−k) is distributed as Ã = G̃ᵀG̃,
conditioned on all observations x1, . . . ,xk,w1, . . . ,wk

} ∆ is known exactly

} Analogous holds for Wigner Matrices: A = 1
2(G + Gᵀ)

} Has been used for Trace, Max Eigenvalue, Linear Systems,
SVD Lower Bounds
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Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε
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Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough n:

P0 A = GTG for G ∈ R( 1
ε
) ×d Gaussian

P1 A = GTG for G ∈ R( 1
ε
+1)×d Gaussian

1. A trace estimator can distinguish P0 from P1

◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1
ε ) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ User access A through the oracle
◦ WLOG User picks standard basis vectors
◦ Bound Total Variation between first k columns of A0 and A1
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Trace Estimation Summary

1. Introduced Hutchinson’s Estimator for PSD A
2. Improved it: Hutch++ uses O(1

ε )

3. Two lower bounds: Adaptive & Non-Adaptive require Ω(1
ε )

4. Trace Estimation requires Θ(1
ε ) queries
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Open Questions

} When is adaptivity helpful?
} What about inexact oracles? We often approximate f(A)x

with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

} Memory-limited lower bounds? This is a realistic model for
iterative methods.
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