
Hutch++
Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron
Musco (University of Massachusetts Amherst), and David P.
Woodruff (Carnegie Mellon University)

Overview

1. Introduction
◦ What problems am I solving?
◦ Why are these problems interesting?
◦ How am I solving them?

2. Trace Estimation (SOSA 2021)
3. Trace Monomial Estimation (Ongoing Research)

1

Numerical Linear Algebra

} Scientific Computing relies on Numerical Linear Algebra
} We spent decades building better algorithms

} We don’t know which algorithms are optimal
◦ Krylov Iteration is optimal for top eigenvalue
◦ Hutchinson’s Estimator is suboptimal for trace estimation

} My goal: Prove the optimality of linear algebra algorithms
◦ Emphasis on building lower bounds

2

Numerical Linear Algebra

} Scientific Computing relies on Numerical Linear Algebra
} We spent decades building better algorithms
} We don’t know which algorithms are optimal

◦ Krylov Iteration is optimal for top eigenvalue
◦ Hutchinson’s Estimator is suboptimal for trace estimation

} My goal: Prove the optimality of linear algebra algorithms
◦ Emphasis on building lower bounds

2

Numerical Linear Algebra

} Scientific Computing relies on Numerical Linear Algebra
} We spent decades building better algorithms
} We don’t know which algorithms are optimal

◦ Krylov Iteration is optimal for top eigenvalue
◦ Hutchinson’s Estimator is suboptimal for trace estimation

} My goal: Prove the optimality of linear algebra algorithms
◦ Emphasis on building lower bounds

2

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk

3

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk

3

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

3

Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
} Goal: Estimate tr(A) by computing Ax1, . . .Axk

3

Matrix-Vector Oracle Model

Formally: Matrix-Vector Product as a Computational Primitive

} Given access to a d × d matrix A only through a
Matrix-Vector Multiplication Oracle

x input
==⇒ oracle output

===⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .
} Very few existing lower bounds

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

Matrix-Vector Oracle Model

Formally: Matrix-Vector Product as a Computational Primitive

} Given access to a d × d matrix A only through a
Matrix-Vector Multiplication Oracle

x input
==⇒ oracle output

===⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .
} Very few existing lower bounds

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

Matrix-Vector Oracle Model

Formally: Matrix-Vector Product as a Computational Primitive

} Given access to a d × d matrix A only through a
Matrix-Vector Multiplication Oracle

x input
==⇒ oracle output

===⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .
} Very few existing lower bounds

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

Our Contributions

Prior Work:

} Hutchinson’s Estimator: O(1
ε2) products suffice [AT11]

◦ 2 Lines of MATLAB code

} Lower Bound: Hutchinson’s Estimator needs Ω(1
ε2) products

[WWZ14]

Our Results:

} Hutch++ Estimator: O(1
ε) products suffice

◦ 5 Lines of MATLAB code

} Lower Bound: Any estimator needs Ω(1
ε) products

5

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ∥A∥2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi

} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ∥A∥F = ∥λ∥2 ≤ ∥λ∥1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ∥A − B∥F

6

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ∥A∥2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi

} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ∥A∥F = ∥λ∥2 ≤ ∥λ∥1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ∥A − B∥F

6

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ∥A∥2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi

} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i
◦ ∥A∥F = ∥λ∥2 ≤ ∥λ∥1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ∥A − B∥F

6

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ∥A∥2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi

} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i
◦ ∥A∥F = ∥λ∥2 ≤ ∥λ∥1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ∥A − B∥F

6

Probability Review

} If x ∼ N (0, I), then Ax ∼ N (0,AAᵀ)

} If X1, . . . ,Xn ∼ N (0, 1), then S :=
∑

i X2
i ∼ χ2

n, E[S] = n,
Var[S] = 2n

} Chebyshev’s Ineq: |X − E[X]| ≤ 1√
δ

√
Var[X] w.p. ≥ 1 − δ

} Chebyshev’s Ineq: |X − E[X]| ≤ O(
√

Var[X]) w.p. ≥ 2
3

7

Probability Review

} If x ∼ N (0, I), then Ax ∼ N (0,AAᵀ)

} If X1, . . . ,Xn ∼ N (0, 1), then S :=
∑

i X2
i ∼ χ2

n, E[S] = n,
Var[S] = 2n

} Chebyshev’s Ineq: |X − E[X]| ≤ 1√
δ

√
Var[X] w.p. ≥ 1 − δ

} Chebyshev’s Ineq: |X − E[X]| ≤ O(
√

Var[X]) w.p. ≥ 2
3

7

Probability Review

} If x ∼ N (0, I), then Ax ∼ N (0,AAᵀ)

} If X1, . . . ,Xn ∼ N (0, 1), then S :=
∑

i X2
i ∼ χ2

n, E[S] = n,
Var[S] = 2n

} Chebyshev’s Ineq: |X − E[X]| ≤ 1√
δ

√
Var[X] w.p. ≥ 1 − δ

} Chebyshev’s Ineq: |X − E[X]| ≤ O(
√
Var[X]) w.p. ≥ 2

3

7

Towards Optimal

Trace Estimation in the

Matrix-Vector Oracle Model

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2∥A∥2
F

} Hutchinson’s Estimator: Hℓ(A) := 1
ℓ

∑ℓ
i=1 xᵀ

i Axi

E[Hℓ(A)] = tr(A) Var[Hℓ(A)] = 2
ℓ∥A∥2

F

Proof: Hℓ(A) needs ℓ = O(1
ε2) for PSD A

} For PSD A, we have ∥A∥F ≤ tr(A), so that

|Hℓ(A)− tr(A)| ≤ O(1√
ℓ
)∥A∥F (Chebyshev Ineq.)

≤ O(1√
ℓ
) tr(A) (∥A∥F ≤ tr(A))

= ε tr(A) (ℓ = O(1
ε2))

9

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2∥A∥2
F

} Hutchinson’s Estimator: Hℓ(A) := 1
ℓ

∑ℓ
i=1 xᵀ

i Axi

E[Hℓ(A)] = tr(A) Var[Hℓ(A)] = 2
ℓ∥A∥2

F

Proof: Hℓ(A) needs ℓ = O(1
ε2) for PSD A

} For PSD A, we have ∥A∥F ≤ tr(A), so that

|Hℓ(A)− tr(A)| ≤ O(1√
ℓ
)∥A∥F (Chebyshev Ineq.)

≤ O(1√
ℓ
) tr(A) (∥A∥F ≤ tr(A))

= ε tr(A) (ℓ = O(1
ε2))

9

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2∥A∥2
F

} Hutchinson’s Estimator: Hℓ(A) := 1
ℓ

∑ℓ
i=1 xᵀ

i Axi

E[Hℓ(A)] = tr(A) Var[Hℓ(A)] = 2
ℓ∥A∥2

F

Proof: Hℓ(A) needs ℓ = O(1
ε2) for PSD A

} For PSD A, we have ∥A∥F ≤ tr(A), so that

|Hℓ(A)− tr(A)| ≤ O(1√
ℓ
)∥A∥F (Chebyshev Ineq.)

≤ O(1√
ℓ
) tr(A) (∥A∥F ≤ tr(A))

= ε tr(A) (ℓ = O(1
ε2))

9

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2∥A∥2
F

} Hutchinson’s Estimator: Hℓ(A) := 1
ℓ

∑ℓ
i=1 xᵀ

i Axi

E[Hℓ(A)] = tr(A) Var[Hℓ(A)] = 2
ℓ∥A∥2

F

Proof: Hℓ(A) needs ℓ = O(1
ε2) for PSD A

} For PSD A, we have ∥A∥F ≤ tr(A), so that

|Hℓ(A)− tr(A)| ≤ O(1√
ℓ
)∥A∥F (Chebyshev Ineq.)

≤ O(1√
ℓ
) tr(A) (∥A∥F ≤ tr(A))

= ε tr(A) (ℓ = O(1
ε2))

9

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≤O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

10

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≈O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

10

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≈O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?

} Let v =
[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

10

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≈O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

10

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≈O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse
} Hutchinson only requires O(1

ε2) queries if A has a few large
eigenvalues

10

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≈O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?
◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

10

Hutchinson’s Estimator

For what A is this analysis tight?

|Hℓ(A)− tr(A)|≈O(1√
ℓ
)∥A∥F

≤O(1√
ℓ
) tr(A)

= ε tr(A)

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?
◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

10

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + Hℓ(A − Ãk)

If k = ℓ = O(1
ε), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)

11

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + Hℓ(A − Ãk)

If k = ℓ = O(1
ε), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)

11

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + Hℓ(A − Ãk)

If k = ℓ = O(1
ε), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)
11

Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.

Lemma [Sar06, Woo14]
Let S ∈ Rd×k have i.i.d. uniform ±1 entries, Q = orth(AS), and
Ãk = AQQᵀ. Then, with probability 1 − δ,

∥A − Ãk∥F ≤ 2∥A − Ak∥F

so long as S has m = O(k + log(1/δ)) columns.

We can compute the trace of Ãk with m queries and O(mn) space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))

12

Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.

Lemma [Sar06, Woo14]
Let S ∈ Rd×k have i.i.d. uniform ±1 entries, Q = orth(AS), and
Ãk = AQQᵀ. Then, with probability 1 − δ,

∥A − Ãk∥F ≤ 2∥A − Ak∥F

so long as S has m = O(k + log(1/δ)) columns.

We can compute the trace of Ãk with m queries and O(mn) space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))

12

Hutch++

Hutch++ Algorithm:
} Input: Number of matrix-vector queries m, matrix A
1. Sample S ∈ Rd×m

3 and G ∈ Rd×m
3 with i.i.d. N (0, I) entries

2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 3

m tr(GT(I − QQᵀ)A(I − QQᵀ)G)

This algorithm is adaptive:
xk+1 Axkoracle

algorithm

There is a non-adaptive variant of Hutch++:

algorithm

{x1, . . . ,xm} oracle {Ax1, . . . ,Axm}

algorithm

13

Hutch++

Hutch++ Algorithm:
} Input: Number of matrix-vector queries m, matrix A
1. Sample S ∈ Rd×m

3 and G ∈ Rd×m
3 with i.i.d. N (0, I) entries

2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 3

m tr(GT(I − QQᵀ)A(I − QQᵀ)G)

This algorithm is adaptive:
xk+1 Axkoracle

algorithm

There is a non-adaptive variant of Hutch++:

algorithm

{x1, . . . ,xm} oracle {Ax1, . . . ,Axm}

algorithm

13

Hutch++

Hutch++ Algorithm:
} Input: Number of matrix-vector queries m, matrix A
1. Sample S ∈ Rd×m

3 and G ∈ Rd×m
3 with i.i.d. N (0, I) entries

2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 3

m tr(GT(I − QQᵀ)A(I − QQᵀ)G)

This algorithm is adaptive:
xk+1 Axkoracle

algorithm

There is a non-adaptive variant of Hutch++:

algorithm

{x1, . . . ,xm} oracle {Ax1, . . . ,Axm}

algorithm
13

Experiments

When ∥A∥F ≈ tr(A), Hutch++ is much faster than Hℓ:

Fast Eig. Decay Slow Eig. Decay
Decay Plot.pdf Decay Plot.bb

101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

Number of Matrix-Vector Queries

R
el
at
iv
e
Er
ro
r

Hutchinson’s
Hutch++

(a) ∥A∥F = 0.63 tr(A)

Decay Rate.pdf Decay Rate.bb

101 102 103

10−3

10−2

10−1

100

Number of Matrix-Vector Queries
R
el
at
iv
e
Er
ro
r

Hutchinson’s
Hutch++

(b) ∥A∥F = 0.02 tr(A)

14

Trace Estimation Lower Bounds

Super Rough Intuition

x input
==⇒ oracle output

===⇒ Ax

View oracle as a limit on information about A:

1. Suppose A ∼ D is a random matrix
2. Then tr(A) is a random variable with variance
3. If an algorithm computes few queries, it has little information

about tr(A)

4. Then the algorithm cannot predict tr(A) well

16

Super Rough Intuition

x input
==⇒ oracle output

===⇒ Ax

View oracle as a limit on information about A:

1. Suppose A ∼ D is a random matrix
2. Then tr(A) is a random variable with variance
3. If an algorithm computes few queries, it has little information

about tr(A)

4. Then the algorithm cannot predict tr(A) well

16

Removing the Algorithm’s Agency

} Problem: The user can pick many different query vectors x.
} If the user had no freedom, we could use statistics to make

lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors
2. Let G be a N (0, 1) Gaussian matrix

Let Q be an orthogonal matrix
Then GQ is a N (0, 1) Gaussian matrix

◦ (informal) If A uses Gaussians, the responses from the oracle
are independent of the queries submitted.

} (informal) WLOG, the user observes the first k columns of A.

17

Removing the Algorithm’s Agency

} Problem: The user can pick many different query vectors x.
} If the user had no freedom, we could use statistics to make

lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors

2. Let G be a N (0, 1) Gaussian matrix
Let Q be an orthogonal matrix
Then GQ is a N (0, 1) Gaussian matrix

◦ (informal) If A uses Gaussians, the responses from the oracle
are independent of the queries submitted.

} (informal) WLOG, the user observes the first k columns of A.

17

Removing the Algorithm’s Agency

} Problem: The user can pick many different query vectors x.
} If the user had no freedom, we could use statistics to make

lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors
2. Let G be a N (0, 1) Gaussian matrix

Let Q be an orthogonal matrix
Then GQ is a N (0, 1) Gaussian matrix

◦ (informal) If A uses Gaussians, the responses from the oracle
are independent of the queries submitted.

} (informal) WLOG, the user observes the first k columns of A.

17

Removing the Algorithm’s Agency

} Problem: The user can pick many different query vectors x.
} If the user had no freedom, we could use statistics to make

lower bounds.

Two Observations:

1. WLOG, the user submits orthonormal query vectors
2. Let G be a N (0, 1) Gaussian matrix

Let Q be an orthogonal matrix
Then GQ is a N (0, 1) Gaussian matrix

◦ (informal) If A uses Gaussians, the responses from the oracle
are independent of the queries submitted.

} (informal) WLOG, the user observes the first k columns of A.

17

Wigner/Wishart Anti-Concentration Method
Theorem (Wishart Case)
} Let G ∈ Rd×d be a N (0, 1) Gaussian Matrix.
} Let A = GᵀG be a Wishart Matrix.
} An algorithm sends query vectors x1, . . . ,xk, gets responses

w1, . . . ,wk

} Then there exists orthogonal matrix V such that

VAVᵀ = ∆+

[
0 0
0 Ã

]

where Ã ∈ R(d−k)×(d−k) is distributed as Ã = G̃ᵀG̃,
conditioned on all observations x1, . . . ,xk,w1, . . . ,wk

} ∆ is known exactly

} Analogous holds for Wigner Matrices: A = 1
2(G + Gᵀ)

} Has been used for Trace, Max Eigenvalue, Linear Systems,
SVD Lower Bounds

18

Wigner/Wishart Anti-Concentration Method
Theorem (Wishart Case)
} Let G ∈ Rd×d be a N (0, 1) Gaussian Matrix.
} Let A = GᵀG be a Wishart Matrix.
} An algorithm sends query vectors x1, . . . ,xk, gets responses

w1, . . . ,wk

} Then there exists orthogonal matrix V such that

VAVᵀ = ∆+

[
0 0
0 Ã

]

where Ã ∈ R(d−k)×(d−k) is distributed as Ã = G̃ᵀG̃,
conditioned on all observations x1, . . . ,xk,w1, . . . ,wk

} ∆ is known exactly

} Analogous holds for Wigner Matrices: A = 1
2(G + Gᵀ)

} Has been used for Trace, Max Eigenvalue, Linear Systems,
SVD Lower Bounds

18

Wigner/Wishart Anti-Concentration Method
Theorem (Wishart Case)
} Let G ∈ Rd×d be a N (0, 1) Gaussian Matrix.
} Let A = GᵀG be a Wishart Matrix.
} An algorithm sends query vectors x1, . . . ,xk, gets responses

w1, . . . ,wk

} Then there exists orthogonal matrix V such that

VAVᵀ = ∆+

[
0 0
0 Ã

]

where Ã ∈ R(d−k)×(d−k) is distributed as Ã = G̃ᵀG̃,
conditioned on all observations x1, . . . ,xk,w1, . . . ,wk

} ∆ is known exactly

} Analogous holds for Wigner Matrices: A = 1
2(G + Gᵀ)

} Has been used for Trace, Max Eigenvalue, Linear Systems,
SVD Lower Bounds

18

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).

3. Note tr(A) = ∥G∥2
F ∼ χ2

d2 and tr(Ã) ∼ χ2
(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)

◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Wigner/Wishart Anti-Concentration Method

Consider any adaptive algorithm after k steps:

1. tr(A) = tr(VAVᵀ) = tr(∆) + tr(Ã)

2. Let t estimate tr(A). Define t̃ := t − tr(∆).
3. Note tr(A) = ∥G∥2

F ∼ χ2
d2 and tr(Ã) ∼ χ2

(d−k)2

◦ |t − tr(A)| = |̃t − tr(Ã)| ≥ Ω(d − k)
◦ tr(A) ≤ O(d2)

4. Enforce |t − tr(A)| ≤ ε tr(A)

(d − k) ≤ ε · Cd2

5. Set d = 1
2Cε and simplify: k ≥ 1

4Cε

19

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough n:

P0 A = GTG for G ∈ R(1
ε
) ×d Gaussian

P1 A = GTG for G ∈ R(1
ε
+1)×d Gaussian

1. A trace estimator can distinguish P0 from P1

◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1
ε) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ User access A through the oracle
◦ WLOG User picks standard basis vectors
◦ Bound Total Variation between first k columns of A0 and A1

20

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough n:

P0 A = GTG for G ∈ R(1
ε
) ×d Gaussian

P1 A = GTG for G ∈ R(1
ε
+1)×d Gaussian

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1
ε) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ User access A through the oracle
◦ WLOG User picks standard basis vectors
◦ Bound Total Variation between first k columns of A0 and A1

20

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough n:

P0 A = GTG for G ∈ R(1
ε
) ×d Gaussian

P1 A = GTG for G ∈ R(1
ε
+1)×d Gaussian

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1
ε) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ User access A through the oracle

◦ WLOG User picks standard basis vectors
◦ Bound Total Variation between first k columns of A0 and A1

20

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough n:

P0 A = GTG for G ∈ R(1
ε
) ×d Gaussian

P1 A = GTG for G ∈ R(1
ε
+1)×d Gaussian

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1
ε) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ User access A through the oracle
◦ WLOG User picks standard basis vectors

◦ Bound Total Variation between first k columns of A0 and A1

20

Statistical Hypothesis Testing

Non-Adaptive Proof Framework

Design distributions P0 and P1, for large enough n:

P0 A = GTG for G ∈ R(1
ε
) ×d Gaussian

P1 A = GTG for G ∈ R(1
ε
+1)×d Gaussian

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No algorithm can distinguish P0 from P1 with Ω(1
ε) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ User access A through the oracle
◦ WLOG User picks standard basis vectors
◦ Bound Total Variation between first k columns of A0 and A1

20

Trace Estimation Summary

1. Introduced Hutchinson’s Estimator for PSD A
2. Improved it: Hutch++ uses O(1

ε)

3. Two lower bounds: Adaptive & Non-Adaptive require Ω(1
ε)

4. Trace Estimation requires Θ(1
ε) queries

21

Open Questions

} When is adaptivity helpful?
} What about inexact oracles? We often approximate f(A)x

with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

} Memory-limited lower bounds? This is a realistic model for
iterative methods.

22

THANK
YOU

Haim Avron and Sivan Toledo.
Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix.
Journal of the ACM, 58(2), 2011.

Tamas Sarlos.
Improved approximation algorithms for large matrices via
random projections.
In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 143–152,
2006.
David P. Woodruff.
Sketching as a tool for numerical linear algebra.
Foundations and Trends in Theoretical Computer Science,
10(1–2):1–157, 2014.

23

Karl Wimmer, Yi Wu, and Peng Zhang.
Optimal query complexity for estimating the trace of a matrix.
In Proceedings of the 41st International Colloquium on
Automata, Languages and Programming (ICALP), pages
1051–1062, 2014.

23

	Trace Estimation Lower Bounds

