
Hutch++
Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron
Musco (University of Massachusetts Amherst), and David P.
Woodruff (Carnegie Mellon University)

Motivation: Road Network Connectivity

} NYC is adding a new bus line. Where should it go?

} Let’s add a bus line that maximizes connectivity
} We have an adjacency matrix B ∈ Rn×n in memory
} For each possible new route, build a new (n + 1)× (n + 1)

adjacency matrix, and compute the change in connectivity
} We have to compute the connectivity of a graph very quickly

1

Motivation: Road Network Connectivity

} NYC is adding a new bus line. Where should it go?
} Let’s add a bus line that maximizes connectivity

} We have an adjacency matrix B ∈ Rn×n in memory
} For each possible new route, build a new (n + 1)× (n + 1)

adjacency matrix, and compute the change in connectivity
} We have to compute the connectivity of a graph very quickly

1

Motivation: Road Network Connectivity

} NYC is adding a new bus line. Where should it go?
} Let’s add a bus line that maximizes connectivity
} We have an adjacency matrix B ∈ Rn×n in memory

} For each possible new route, build a new (n + 1)× (n + 1)
adjacency matrix, and compute the change in connectivity

} We have to compute the connectivity of a graph very quickly

1

Motivation: Road Network Connectivity

} NYC is adding a new bus line. Where should it go?
} Let’s add a bus line that maximizes connectivity
} We have an adjacency matrix B ∈ Rn×n in memory
} For each possible new route, build a new (n + 1)× (n + 1)

adjacency matrix, and compute the change in connectivity

} We have to compute the connectivity of a graph very quickly

1

Motivation: Road Network Connectivity

} NYC is adding a new bus line. Where should it go?
} Let’s add a bus line that maximizes connectivity
} We have an adjacency matrix B ∈ Rn×n in memory
} For each possible new route, build a new (n + 1)× (n + 1)

adjacency matrix, and compute the change in connectivity
} We have to compute the connectivity of a graph very quickly

1

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory

} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix

} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow

} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory
} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr(1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!

2

Overview

1. Introduction
◦ What problems am I solving?
◦ Why are these problems interesting?
◦ How am I solving them?

2. Trace Estimation (SOSA 2021)
◦ Prior State-of-the-Art
◦ When can this be improved?
◦ New Algorithm: Hutch++

3

General Picture: Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f (B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

General Picture: Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f (B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

General Picture: Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f (B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

General Picture: Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f (B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)

4

Our Contributions

Prior Work:

} Hutchinson’s Estimator: O(1
ε2) products suffice [AT11]

◦ 2 Lines of MATLAB code

} Lower Bound: Hutchinson’s Estimator needs Ω(1
ε2) products

[WWZ14]

Our Results:

} Hutch++ Estimator: O(1
ε) products suffice

◦ 5 Lines of MATLAB code

} Lower Bound: Any estimator needs Ω(1
ε) products

5

Our Contributions

Prior Work:

} Hutchinson’s Estimator: O(1
ε2) products suffice [AT11]

◦ 2 Lines of MATLAB code

} Lower Bound: Hutchinson’s Estimator needs Ω(1
ε2) products

[WWZ14]

Our Results:

} Hutch++ Estimator: O(1
ε) products suffice

◦ 5 Lines of MATLAB code

} Lower Bound: Any estimator needs Ω(1
ε) products

5

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ‖A‖2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi
} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ‖A‖F = ‖λ‖2 ≤ ‖λ‖1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ‖A − B‖F

6

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ‖A‖2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi

} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ‖A‖F = ‖λ‖2 ≤ ‖λ‖1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ‖A − B‖F

6

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ‖A‖2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi
} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ‖A‖F = ‖λ‖2 ≤ ‖λ‖1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ‖A − B‖F

6

Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ‖A‖2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi
} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ‖A‖F = ‖λ‖2 ≤ ‖λ‖1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ‖A − B‖F

6

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2‖A‖2
F

} Hutchinson’s Estimator: H`(A) := 1
`

∑`
i=1 xᵀ

i Axi

E[H`(A)] = tr(A) Var[H`(A)] = 2
`‖A‖2

F

Proof: H`(A) needs ` = O(1
ε2) for PSD A

} For PSD A, we have ‖A‖F ≤ tr(A), so that

|H`(A)− tr(A)| ≤ 1√
`
‖A‖F (Standard Deviation)

≤ 1√
`
tr(A) (‖A‖F ≤ tr(A))

= ε tr(A) (` = O(1
ε2))

7

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2‖A‖2
F

} Hutchinson’s Estimator: H`(A) := 1
`

∑`
i=1 xᵀ

i Axi

E[H`(A)] = tr(A) Var[H`(A)] = 2
`‖A‖2

F

Proof: H`(A) needs ` = O(1
ε2) for PSD A

} For PSD A, we have ‖A‖F ≤ tr(A), so that

|H`(A)− tr(A)| ≤ 1√
`
‖A‖F (Standard Deviation)

≤ 1√
`
tr(A) (‖A‖F ≤ tr(A))

= ε tr(A) (` = O(1
ε2))

7

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2‖A‖2
F

} Hutchinson’s Estimator: H`(A) := 1
`

∑`
i=1 xᵀ

i Axi

E[H`(A)] = tr(A) Var[H`(A)] = 2
`‖A‖2

F

Proof: H`(A) needs ` = O(1
ε2) for PSD A

} For PSD A, we have ‖A‖F ≤ tr(A), so that

|H`(A)− tr(A)| ≤ 1√
`
‖A‖F (Standard Deviation)

≤ 1√
`
tr(A) (‖A‖F ≤ tr(A))

= ε tr(A) (` = O(1
ε2))

7

Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2‖A‖2
F

} Hutchinson’s Estimator: H`(A) := 1
`

∑`
i=1 xᵀ

i Axi

E[H`(A)] = tr(A) Var[H`(A)] = 2
`‖A‖2

F

Proof: H`(A) needs ` = O(1
ε2) for PSD A

} For PSD A, we have ‖A‖F ≤ tr(A), so that

|H`(A)− tr(A)| ≤ 1√
`
‖A‖F (Standard Deviation)

≤ 1√
`
tr(A) (‖A‖F ≤ tr(A))

= ε tr(A) (` = O(1
ε2))

7

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≤O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?

◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?

◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?

} Let v =
[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?

◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?

◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?

◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?
◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse

◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?
◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≈O(1√
`
)‖A‖F

≤O(1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?
◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

8

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + H`(A − Ãk)

If k = ` = O(1
ε), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)

9

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + H`(A − Ãk)

If k = ` = O(1
ε), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)

9

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + H`(A − Ãk)

If k = ` = O(1
ε), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)
9

Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.
Lemma [Sar06, Woo14]
Let S ∈ Rd×O(k) have N (0, 1) entries
Let Q = qr(AS)
Let Ãk = AQQᵀ

Then, with high probability

‖A − Ãk‖F ≤ 2‖A − Ak‖F

We can compute the trace of Ãk with O(k) queries and O(dk)
space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))

10

Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.
Lemma [Sar06, Woo14]
Let S ∈ Rd×O(k) have N (0, 1) entries
Let Q = qr(AS)
Let Ãk = AQQᵀ

Then, with high probability

‖A − Ãk‖F ≤ 2‖A − Ak‖F

We can compute the trace of Ãk with O(k) queries and O(dk)
space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))

10

Hutch++

Hutch++ Algorithm:
} Input: Number of matrix-vector queries m, matrix A

1. Sample S ∈ Rd×m
3 and G ∈ Rd×m

3 with i.i.d. N (0, I) entries
2. Compute Q = qr(AS)
3. Return tr(QT AQ) + 3

m tr(GT (I − QQᵀ)A(I − QQᵀ)G)

11

Experiments

When ‖A‖F ≈ tr(A), Hutch++ is much faster than H`:

Fast Eig. Decay Slow Eig. Decay

101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

Number of Matrix-Vector Queries

R
el
at
iv
e
Er
ro
r

Hutchinson’s
Hutch++

(a) ‖A‖F = 0.63 tr(A)

101 102 103

10−3

10−2

10−1

100

Number of Matrix-Vector Queries
R
el
at
iv
e
Er
ro
r

Hutchinson’s
Hutch++

(b) ‖A‖F = 0.02 tr(A)

12

When A is not PSD

Hutch++ works great for most matrices:

Error in tr(1
6B3) Eigs. of B

Figure: Estimating num of triangles of arXiv Citation Network

13

Open Questions

} When is adaptivity helpful?
} What about inexact oracles? We often approximate f (A)x

with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

} Memory-limited lower bounds? This is a realistic model for
iterative methods.

14

THANK
YOU

Haim Avron and Sivan Toledo.
Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix.
Journal of the ACM, 58(2), 2011.

Tamas Sarlos.
Improved approximation algorithms for large matrices via
random projections.
In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 143–152,
2006.
David P. Woodruff.
Sketching as a tool for numerical linear algebra.
Foundations and Trends in Theoretical Computer Science,
10(1–2):1–157, 2014.

15

Karl Wimmer, Yi Wu, and Peng Zhang.
Optimal query complexity for estimating the trace of a matrix.
In Proceedings of the 41st International Colloquium on
Automata, Languages and Programming (ICALP), pages
1051–1062, 2014.

15

