Hutch++

Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron Musco (University of Massachusetts Amherst), and David P. Woodruff (Carnegie Mellon University)

◎ NYC is adding a new bus line. Where should it go?

NYC is adding a new bus line. Where should it go?
Let's add a bus line that maximizes *connectivity*

- ◎ NYC is adding a new bus line. Where should it go?
- Let's add a bus line that maximizes connectivity
- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory

- ◎ NYC is adding a new bus line. Where should it go?
- Let's add a bus line that maximizes connectivity
- We have an adjacency matrix $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ in memory
- For each possible new route, build a new (n + 1) × (n + 1) adjacency matrix, and compute the change in connectivity

- ◎ NYC is adding a new bus line. Where should it go?
- Let's add a bus line that maximizes connectivity
- We have an adjacency matrix $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ in memory
- For each possible new route, build a new (n + 1) × (n + 1) adjacency matrix, and compute the change in connectivity
- We have to compute the connectivity of a graph very quickly

 \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- We want to measure the connectivity of the graph:

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- $\odot\,$ We want to measure the connectivity of the graph:

• Estrada Index =
$$tr(e^B)$$

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- $\odot\,$ We want to measure the connectivity of the graph:
 - Estrada Index = $tr(e^B)$
 - Num of Triangles = $tr(\frac{1}{6}B^3)$

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- We want to measure the connectivity of the graph:
 - Estrada Index = $tr(e^B)$
 - Num of Triangles = $tr(\frac{1}{6}B^3)$

The trace is the sum of the diagonal of a matrix

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- O We want to measure the connectivity of the graph:
 - Estrada Index = $tr(e^B)$
 - Num of Triangles = $tr(\frac{1}{6}B^3)$
- The trace is the sum of the diagonal of a matrix
- Computing B^3 takes $O(n^3)$ time. slow

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- $\odot\,$ We want to measure the connectivity of the graph:
 - Estrada Index = $tr(e^B)$
 - Num of Triangles = $tr(\frac{1}{6}B^3)$
- The trace is the sum of the diagonal of a matrix
- Computing B^3 takes $O(n^3)$ time. slow
- Computing $B^3 x = B(B(Bx))$ takes $O(n^2)$ time. *fast*

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- $\odot\,$ We want to measure the connectivity of the graph:
 - Estrada Index = $tr(e^B)$
 - Num of Triangles = $tr(\frac{1}{6}B^3)$
- The trace is the sum of the diagonal of a matrix
- Computing B^3 takes $O(n^3)$ time. slow
- Computing $B^3 x = B(B(Bx))$ takes $O(n^2)$ time. *fast*

Can we approximate $tr(B^3)$ by computing few B^3x_1, \ldots, B^3x_k ?

- \odot We have an adjacency matrix $oldsymbol{B} \in \mathbb{R}^{n imes n}$ in memory
- O We want to measure the connectivity of the graph:
 - Estrada Index = $tr(e^B)$
 - Num of Triangles = $tr(\frac{1}{6}B^3)$
- The trace is the sum of the diagonal of a matrix
- Computing B^3 takes $O(n^3)$ time. slow
- Computing $B^3x = B(B(Bx))$ takes $O(n^2)$ time. *fast*

Can we approximate $\operatorname{tr}(\boldsymbol{B}^3)$ by computing few $\boldsymbol{B}^3\mathbf{x}_1,\ldots,\boldsymbol{B}^3\mathbf{x}_k?$

• Yes we can!

- 1. Introduction
 - What problems am I solving?
 - Why are these problems interesting?
 - How am I solving them?
- 2. Trace Estimation (SOSA 2021)
 - Prior State-of-the-Art
 - When can this be improved?
 - New Algorithm: Hutch++

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{d} \boldsymbol{A}_{ii} = \sum_{i=1}^{d} \lambda_i$$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

◎ In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

◎ In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

 \odot Goal: Estimate tr(**A**) by computing $Ax_1, \dots Ax_k$

• Goal: Estimate trace of $d \times d$ matrix **A**:

$$\operatorname{tr}(oldsymbol{A}) = \sum_{i=1}^d oldsymbol{A}_{ii} = \sum_{i=1}^d \lambda_i$$

◎ In Downstream Applications, **A** is not stored in memory.

 \odot Instead, **B** is in memory and **A** = f(**B**):

No. TrianglesEstrada IndexLog-Determinant
$$tr(\frac{1}{6}B^3)$$
 $tr(e^B)$ $tr(ln(B))$

 \odot Goal: Estimate tr(**A**) by computing $Ax_1, \dots Ax_k$

Trace Estimation: Estimate tr(A) with as few Matrix-Vector products Ax_1, \ldots, Ax_k as possible.

$$|\tilde{\operatorname{tr}}(\boldsymbol{A}) - \operatorname{tr}(\boldsymbol{A})| \leq \varepsilon \operatorname{tr}(\boldsymbol{A})$$

Prior Work:

• Hutchinson's Estimator: $O(\frac{1}{\varepsilon^2})$ products suffice [AT11]

 $\circ~$ 2 Lines of MATLAB code

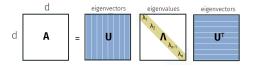
⊙ Lower Bound: Hutchinson's Estimator needs Ω($\frac{1}{ε^2}$) products [WWZ14]

Prior Work:

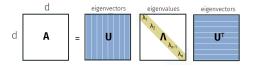
- ⊚ Hutchinson's Estimator: $O(\frac{1}{\varepsilon^2})$ products suffice [AT11]
 - 2 Lines of MATLAB code

Our Results:

- Hutch++ Estimator: $O(\frac{1}{\varepsilon})$ products suffice • 5 Lines of MATLAB code
- Lower Bound: Any estimator needs $\Omega(\frac{1}{\varepsilon})$ products



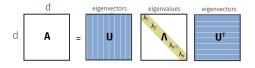
- \odot Symmetric $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ has $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{T}}$
- **U** is a rotation matrix: $U^{\mathsf{T}}U = I$
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$



- \odot Symmetric $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ has $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{T}}$
- **U** is a rotation matrix: $U^{\mathsf{T}}U = I$
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$

$$\|\boldsymbol{A}\|_{F}^{2} = \sum_{i,j} \boldsymbol{A}_{i,j}^{2} = \sum_{i} \lambda_{i}^{2}$$

$$\text{tr}(\boldsymbol{A}) = \sum_{i} \boldsymbol{A}_{i,i} = \sum_{i} \lambda_{i}$$



- \odot Symmetric $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ has $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{T}}$
- \odot **U** is a rotation matrix: **U**^T**U** = **I**
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$

$$\|\mathbf{A}\|_F^2 = \sum_{i,j} \mathbf{A}_{i,j}^2 = \sum_i \lambda_i^2$$

•
$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i} \boldsymbol{A}_{i,i} = \sum_{i} \lambda_{i}$$

○ Positive Semi-Definite (PSD) **A** has $\lambda_i \ge 0$ for all *i*

$$\circ \|\boldsymbol{A}\|_{F} = \|\boldsymbol{\lambda}\|_{2} \leq \|\boldsymbol{\lambda}\|_{1} = \mathsf{tr}(\boldsymbol{A})$$

- \odot Symmetric $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ has $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{T}}$
- \odot **U** is a rotation matrix: **U**^T**U** = **I**
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$

$$\|\boldsymbol{A}\|_{F}^{2} = \sum_{i,j} \boldsymbol{A}_{i,j}^{2} = \sum_{i} \lambda_{i}^{2}$$

•
$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i} \boldsymbol{A}_{i,i} = \sum_{i} \lambda_{i}$$

◎ Positive Semi-Definite (PSD) **A** has $\lambda_i \ge 0$ for all *i*

$$\circ \|\boldsymbol{A}\|_{\boldsymbol{F}} = \|\boldsymbol{\lambda}\|_2 \le \|\boldsymbol{\lambda}\|_1 = \mathsf{tr}(\boldsymbol{A})$$

O Low Rank Approximation:

$$oldsymbol{A}_k = oldsymbol{U}_k oldsymbol{\Lambda}_k oldsymbol{U}_k^{\mathsf{T}} = \operatorname{argmin}_{\operatorname{rank}(oldsymbol{B}) = k} \|oldsymbol{A} - oldsymbol{B}\|_F$$

If x ∼
$$\mathcal{N}(0, I)$$
, then
 $\mathbb{E}[\mathbf{x}^{\mathsf{T}} \boldsymbol{A} \mathbf{x}] = \mathsf{tr}(\boldsymbol{A})$

 $\operatorname{Var}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = 2 \|\mathbf{A}\|_{F}^{2}$

Mutchinson's Estimator: H_ℓ(**A**) := ¹/_ℓ ∑^ℓ_{i=1} x^T_i **A**x_i
 E[H_ℓ(**A**)] = tr(**A**) Var[H_ℓ(**A**)] = ²/_ℓ ||**A**||²_F

If x ∼
$$\mathcal{N}(0, I)$$
, then
 $\mathbb{E}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = tr(A)$
 $Var[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = 2 \|A\|_{F}^{2}$

Hutchinson's Estimator: H_ℓ(**A**) := ¹/_ℓ ∑^ℓ_{i=1} x^T_i **A**x_i
 E[H_ℓ(**A**)] = tr(**A**) Var[H_ℓ(**A**)] = ²/_ℓ ||**A**||²_F

Proof: $H_{\ell}(\mathbf{A})$ needs $\ell = O(\frac{1}{\varepsilon^2})$ for PSD \mathbf{A}

○ For PSD **A**, we have $\|\mathbf{A}\|_F \leq tr(\mathbf{A})$, so that

If x ∼
$$\mathcal{N}(0, I)$$
, then
 $\mathbb{E}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = tr(A)$
 $Var[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = 2 \|A\|_{F}^{2}$

Hutchinson's Estimator: H_ℓ(**A**) := ¹/_ℓ ∑^ℓ_{i=1} **x**^T_i **Ax**_i
 $\mathbb{E}[H_ℓ($ **A**)] = tr(**A**) Var[H_ℓ(**A**)] = ²/_ℓ ||**A**||²_F

Proof:
$$H_{\ell}(\mathbf{A})$$
 needs $\ell = O(\frac{1}{\epsilon^2})$ for PSD \mathbf{A}

◎ For PSD **A**, we have $\|\mathbf{A}\|_F \leq tr(\mathbf{A})$, so that

$$\begin{split} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A})| &\leq \frac{1}{\sqrt{\ell}} \|\boldsymbol{A}\|_{F} \qquad (\text{Standard Deviation}) \\ &\leq \frac{1}{\sqrt{\ell}} \operatorname{tr}(\boldsymbol{A}) \qquad (\|\boldsymbol{A}\|_{F} \leq \operatorname{tr}(\boldsymbol{A})) \\ &= \varepsilon \operatorname{tr}(\boldsymbol{A}) \qquad (\ell = O(\frac{1}{\varepsilon^{2}})) \end{split}$$

For what \boldsymbol{A} is this analysis tight?

$$\begin{aligned} \mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A}) &| \leq O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_{F} \\ &\leq O(\frac{1}{\sqrt{\ell}}) \, \mathsf{tr}(\boldsymbol{A}) \\ &= \varepsilon \, \mathsf{tr}(\boldsymbol{A}) \end{aligned}$$

For what \boldsymbol{A} is this analysis tight?

$$\begin{aligned} \mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A}) &|\approx O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_{F} \\ &\leq O(\frac{1}{\sqrt{\ell}}) \, \mathsf{tr}(\boldsymbol{A}) \\ &= \varepsilon \, \mathsf{tr}(\boldsymbol{A}) \end{aligned}$$

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(\mathcal{A}) - \mathrm{tr}(\mathcal{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|\mathcal{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \,\mathrm{tr}(\mathcal{A}) \ &= arepsilon \,\mathrm{tr}(\mathcal{A}) \end{aligned}$$

○ When is the bound $\|\mathbf{A}\|_{F} \leq tr(A)$ tight?

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(\mathcal{A}) - \mathrm{tr}(\mathcal{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|\mathcal{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \,\mathrm{tr}(\mathcal{A}) \ &= arepsilon \,\mathrm{tr}(\mathcal{A}) \end{aligned}$$

When is the bound ||**A**||_F ≤ tr(A) tight?
Let **v** = [λ₁ ... λ_n] be the eigenvalues of PSD **A**

For what \boldsymbol{A} is this analysis tight?

$$egin{aligned} |\mathsf{H}_{\ell}(\mathcal{A}) - \mathrm{tr}(\mathcal{A})| &\approx O(rac{1}{\sqrt{\ell}}) \|\mathcal{A}\|_F \ &\leq O(rac{1}{\sqrt{\ell}}) \,\mathrm{tr}(\mathcal{A}) \ &= arepsilon \,\mathrm{tr}(\mathcal{A}) \end{aligned}$$

When is the bound ||**A**||_F ≤ tr(A) tight?
Let **v** = [λ₁ ... λ_n] be the eigenvalues of PSD **A**When is the bound ||**v**||₂ ≤ ||**v**||₁ tight?

For what \boldsymbol{A} is this analysis tight?

$$\begin{split} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A})| &\approx O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_{F} \\ &\leq O(\frac{1}{\sqrt{\ell}}) \operatorname{tr}(\boldsymbol{A}) \\ &= \varepsilon \operatorname{tr}(\boldsymbol{A}) \end{split}$$

When is the bound ||**A**||_F ≤ tr(A) tight?
Let **v** = [λ₁ ... λ_n] be the eigenvalues of PSD **A**When is the bound ||**v**||₂ ≤ ||**v**||₁ tight?
Property of norms: ||**v**||₂ ≈ ||**v**||₁ only if **v** is nearly sparse

Hutchinson's Estimator

For what \boldsymbol{A} is this analysis tight?

$$\begin{split} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A})| &\approx O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_{F} \\ &\leq O(\frac{1}{\sqrt{\ell}}) \operatorname{tr}(\boldsymbol{A}) \\ &= \varepsilon \operatorname{tr}(\boldsymbol{A}) \end{split}$$

When is the bound ||A||_F ≤ tr(A) tight?
Let v = [λ₁ ... λ_n] be the eigenvalues of PSD A
When is the bound ||v||₂ ≤ ||v||₁ tight?
Property of norms: ||v||₂ ≈ ||v||₁ only if v is nearly sparse
Otherwise ||v||₂ ≪ ||v||₁

Hutchinson's Estimator

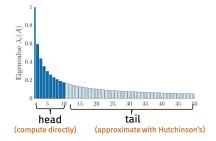
For what \boldsymbol{A} is this analysis tight?

$$\begin{split} |\mathsf{H}_{\ell}(\boldsymbol{A}) - \mathsf{tr}(\boldsymbol{A})| &\approx O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_{F} \\ &\leq O(\frac{1}{\sqrt{\ell}}) \operatorname{tr}(\boldsymbol{A}) \\ &= \varepsilon \operatorname{tr}(\boldsymbol{A}) \end{split}$$

When is the bound ||A||_F ≤ tr(A) tight?
Let v = [λ₁ ... λ_n] be the eigenvalues of PSD A
When is the bound ||v||₂ ≤ ||v||₁ tight?
Property of norms: ||v||₂ ≈ ||v||₁ only if v is nearly sparse
Otherwise ||v||₂ ≪ ||v||₁
Hutchinson only requires O(¹/_{ε²}) queries if A has a few large

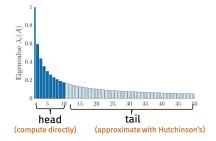
eigenvalues

Helping Hutchinson's Estimator



Idea: Explicitly estimate the top few eigenvalues of A. Use Hutchinson's for the rest.

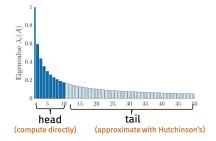
Helping Hutchinson's Estimator



Idea: Explicitly estimate the top few eigenvalues of **A**. Use Hutchinson's for the rest.

- 1. Find a good rank-k approximation \tilde{A}_k
- 2. Notice that $tr(\boldsymbol{A}) = tr(\tilde{\boldsymbol{A}}_k) + tr(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$
- 3. Compute $tr(\tilde{\boldsymbol{A}}_k)$ exactly
- 4. Return Hutch++(\boldsymbol{A}) = tr($\tilde{\boldsymbol{A}}_k$) + H_{ℓ}($\boldsymbol{A} \tilde{\boldsymbol{A}}_k$)

Helping Hutchinson's Estimator



Idea: Explicitly estimate the top few eigenvalues of **A**. Use Hutchinson's for the rest.

- 1. Find a good rank-k approximation \tilde{A}_k
- 2. Notice that $tr(\boldsymbol{A}) = tr(\tilde{\boldsymbol{A}}_k) + tr(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$
- 3. Compute $tr(\tilde{\boldsymbol{A}}_k)$ exactly
- 4. Return Hutch++(\boldsymbol{A}) = tr($\tilde{\boldsymbol{A}}_k$) + H_{ℓ}($\boldsymbol{A} \tilde{\boldsymbol{A}}_k$)

If
$$k = \ell = O(\frac{1}{\varepsilon})$$
, then $|\text{Hutch}^{++}(\mathbf{A}) - \text{tr}(\mathbf{A})| \le \varepsilon \operatorname{tr}(\mathbf{A})$.
(Whiteboard)

9

Finding a Good Low-Rank Approximation

Let A_k be the best rank-k approximation of A.

Lemma [Sar06, Woo14]

Let $oldsymbol{S} \in \mathbb{R}^{d imes O(k)}$ have $\mathcal{N}(0,1)$ entries

 $\mathsf{Let} \ \mathop{\pmb{Q}}_{\sim} = \mathsf{qr}(\pmb{AS})$

Let $\tilde{\boldsymbol{A}}_k = \boldsymbol{A} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}}$

Then, with high probability

$$\|\boldsymbol{A} - \tilde{\boldsymbol{A}}_k\|_F \leq 2\|\boldsymbol{A} - \boldsymbol{A}_k\|_F$$

Finding a Good Low-Rank Approximation

Let A_k be the best rank-k approximation of A.

Lemma [Sar06, Woo14]

Let
$$oldsymbol{S} \in \mathbb{R}^{d imes O(k)}$$
 have $\mathcal{N}(0,1)$ entries

Let $\mathbf{Q} = qr(\mathbf{AS})$

Let $\tilde{\boldsymbol{A}}_k = \boldsymbol{A} \boldsymbol{Q} \boldsymbol{Q}^{\intercal}$

Then, with high probability

$$\|\boldsymbol{A} - \tilde{\boldsymbol{A}}_k\|_F \leq 2\|\boldsymbol{A} - \boldsymbol{A}_k\|_F$$

We can compute the trace of \tilde{A}_k with O(k) queries and O(dk) space:

$$\operatorname{tr}(\tilde{\boldsymbol{A}}_k) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{Q}\boldsymbol{Q}^{\intercal}) = \operatorname{tr}(\boldsymbol{Q}^{\intercal}(\boldsymbol{A}\boldsymbol{Q}))$$

Hutch++

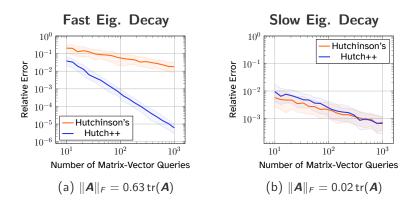
Hutch++ Algorithm:

 \odot Input: Number of matrix-vector queries *m*, matrix **A**

- 1. Sample $\boldsymbol{S} \in \mathbb{R}^{d imes \frac{m}{3}}$ and $\boldsymbol{G} \in \mathbb{R}^{d imes \frac{m}{3}}$ with i.i.d. $\mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ entries
- 2. Compute $\boldsymbol{Q} = qr(\boldsymbol{AS})$
- 3. Return tr($Q^T A Q$) + $\frac{3}{m}$ tr($G^T (I Q Q^T) A (I Q Q^T) G$)

```
1 □ function T = hutchplusplus(A, m)
2 -
3 -
4 -
[0,~] = qr(A*S,0);
5 -
6 -
T = trace(Q'*A*Q) + 1/size(G,2)*trace(G'*A*G);
7 -
end
```

When $\|\mathbf{A}\|_F \approx tr(\mathbf{A})$, Hutch++ is much faster than H_ℓ :



When A is not PSD

Hutch++ works great for most matrices:

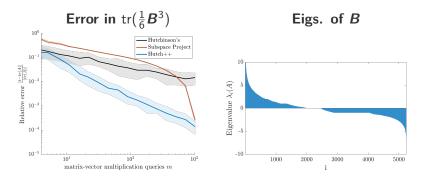


Figure: Estimating num of triangles of arXiv Citation Network

- When is adaptivity helpful?
- What about inexact oracles? We often approximate f(A)x with iterative methods. How accurate do these computations need to be?
- Extend to include row/column sampling? This would encapsulate e.g. SGD/SCD.
- Memory-limited lower bounds? This is a realistic model for iterative methods.

THANK YOU

Haim Avron and Sivan Toledo.

Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix.

<u>Journal of the ACM</u>, 58(2), 2011.

Improved approximation algorithms for large matrices via random projections.

In <u>Proceedings of the 47th Annual IEEE Symposium on</u> <u>Foundations of Computer Science (FOCS)</u>, pages 143–152, 2006.

- David P. Woodruff.

Sketching as a tool for numerical linear algebra.

Foundations and Trends in Theoretical Computer Science, 10(1–2):1–157, 2014.

🔋 Karl Wimmer, Yi Wu, and Peng Zhang.

Optimal query complexity for estimating the trace of a matrix.

In Proceedings of the 41st International Colloquium on

Automata, Languages and Programming (ICALP), pages 1051–1062. 2014.