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Motivation: Road Network Connectivity

} NYC is adding a new bus line. Where should it go?

} Let’s add a bus line that maximizes connectivity
} We have an adjacency matrix B ∈ Rn×n in memory
} For each possible new route, build a new (n + 1)× (n + 1)

adjacency matrix, and compute the change in connectivity
} We have to compute the connectivity of a graph very quickly
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Concrete Computational Problem

} We have an adjacency matrix B ∈ Rn×n in memory

} We want to measure the connectivity of the graph:

◦ Estrada Index = tr(eB)

◦ Num of Triangles = tr( 1
6 B3)

} The trace is the sum of the diagonal of a matrix
} Computing B3 takes O(n3) time. slow
} Computing B3x = B(B(Bx)) takes O(n2) time. fast

Can we approximate tr(B3) by computing few
B3x1, . . . ,B3xk?

} Yes we can!
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Overview

1. Introduction
◦ What problems am I solving?
◦ Why are these problems interesting?
◦ How am I solving them?

2. Trace Estimation (SOSA 2021)
◦ Prior State-of-the-Art
◦ When can this be improved?
◦ New Algorithm: Hutch++
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General Picture: Trace Estimation

} Goal: Estimate trace of d × d matrix A:

tr(A) =
d∑

i=1
Aii =

d∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f (B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Goal: Estimate tr(A) by computing Ax1, . . .Axk

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Ax1, . . . ,Axk as possible.

|t̃r(A)− tr(A)| ≤ ε tr(A)
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Our Contributions

Prior Work:

} Hutchinson’s Estimator: O( 1
ε2 ) products suffice [AT11]

◦ 2 Lines of MATLAB code

} Lower Bound: Hutchinson’s Estimator needs Ω( 1
ε2 ) products

[WWZ14]

Our Results:

} Hutch++ Estimator: O(1
ε ) products suffice

◦ 5 Lines of MATLAB code

} Lower Bound: Any estimator needs Ω(1
ε ) products
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Linear Algebra Review

} Symmetric A ∈ Rd×d has A = UΛUᵀ

} U is a rotation matrix: UᵀU = I
} Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd

} ‖A‖2
F =

∑
i,j A2

i,j =
∑

i λ
2
i

} tr(A) =
∑

i Ai,i =
∑

i λi
} Positive Semi-Definite (PSD) A has λi ≥ 0 for all i

◦ ‖A‖F = ‖λ‖2 ≤ ‖λ‖1 = tr(A)

} Low Rank Approximation:
Ak = UkΛkUᵀ

k = argminrank(B)=k ‖A − B‖F
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Hutchinson’s Estimator

} If x ∼ N (0, I), then

E[xᵀAx] = tr(A) Var[xᵀAx] = 2‖A‖2
F

} Hutchinson’s Estimator: H`(A) := 1
`

∑`
i=1 xᵀ

i Axi

E[H`(A)] = tr(A) Var[H`(A)] = 2
`‖A‖2

F

Proof: H`(A) needs ` = O( 1
ε2 ) for PSD A

} For PSD A, we have ‖A‖F ≤ tr(A), so that

|H`(A)− tr(A)| ≤ 1√
`
‖A‖F (Standard Deviation)

≤ 1√
`
tr(A) (‖A‖F ≤ tr(A))

= ε tr(A) (` = O( 1
ε2 ))
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Hutchinson’s Estimator

For what A is this analysis tight?

|H`(A)− tr(A)|≤O( 1√
`
)‖A‖F

≤O( 1√
`
) tr(A)

= ε tr(A)

} When is the bound ‖A‖F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ‖v‖2 ≤ ‖v‖1 tight?

◦ Property of norms: ‖v‖2 ≈ ‖v‖1 only if v is nearly sparse
◦ Otherwise ‖v‖2 � ‖v‖1

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues
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Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Return Hutch++(A) = tr(Ãk) + H`(A − Ãk)

If k = ` = O(1
ε ), then |Hutch++(A)− tr(A)| ≤ ε tr(A).

(Whiteboard)
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2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)
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Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.
Lemma [Sar06, Woo14]
Let S ∈ Rd×O(k) have N (0, 1) entries
Let Q = qr(AS)
Let Ãk = AQQᵀ

Then, with high probability

‖A − Ãk‖F ≤ 2‖A − Ak‖F

We can compute the trace of Ãk with O(k) queries and O(dk)
space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))
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Hutch++

Hutch++ Algorithm:
} Input: Number of matrix-vector queries m, matrix A

1. Sample S ∈ Rd×m
3 and G ∈ Rd×m

3 with i.i.d. N (0, I) entries
2. Compute Q = qr(AS)
3. Return tr(QT AQ) + 3

m tr(GT (I − QQᵀ)A(I − QQᵀ)G)

11



Experiments

When ‖A‖F ≈ tr(A), Hutch++ is much faster than H`:

Fast Eig. Decay Slow Eig. Decay
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(a) ‖A‖F = 0.63 tr(A)
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(b) ‖A‖F = 0.02 tr(A)
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When A is not PSD

Hutch++ works great for most matrices:

Error in tr(1
6B3) Eigs. of B

Figure: Estimating num of triangles of arXiv Citation Network
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Open Questions

} When is adaptivity helpful?
} What about inexact oracles? We often approximate f (A)x

with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

} Memory-limited lower bounds? This is a realistic model for
iterative methods.
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