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Approximate SVD / Low Rank Approximation

© Given A € R"<9 target rank k, error tolerance € > 0

© Return orthonormal matrix @ € R"™k such that

|a] AATq; — o/(A)?| < coi( A)°

Algorithm from [Musco & Musco '15]:

input: Block size b. Number of iterations ¢.
output: Orthonormal Matrix Q € R"*¥.

: Sample B € R™*® with i.i.d. N(0,1) entries
K=[B, (AAT)B, ..., (AAT)'B]

: Compute an orthonormal basis Z for K

: Compute Uy, the k top left singular vectors of ZTA
: return Q = ZUy,
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Focusing on Block Size

How should we set the block size b and number of iterations t7?

In Theory,

© Block size b = k has sublinear convergence for all A

© Block size b = k+ 251 has linear convergence if
oky251 < 0.90

In Practice,

© Block size b=1 or 2 is good
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Big ldea: Simulated Block Krylov

Single Vector Krylov simulates all larger-block Krylovs

To simulate block size b = 3, let B = [g A% A%], then:

K=|g A A'g A% ... A%
=) [[g A’g A'g] [ A’g Atg ASg] ... [AX2g A2Dg A%
_ [B A’B ... A2(f*2)B}

Block Size 3 Krylov
— for t — 2 iterations
starting from B

Single Vector Krylov
for t iterations
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How to Analyzed Simulated Blocks

Theorem: Inital Block isn't that Bad

\Gi*0i+1 |
Ojt1

Let b be the simulated block size. Let gmin := min;c[y)

Let Z span the columns of AATB. With probability 1 — 6,

o
A—ZZTA|le<O|—— | ||[A—A
H Ir< 0 (55— ) 1A= Aule

Proof via bounds on Legendre interpolating polynomials [Saad '80]

Via existing iterative analysis, Block Krylov depends on

og <5;‘§n> ~ blog (gi) +log <g’>




Sublinear & Linear Convergence [Musco & Musco '15]

Sublinear Convergence

We simulate block size b = k, so

=0z () + 725 (5))

iterations suffice.

Linear Convergence
We simulate all block sizes b € [k+ 1, ], so if op < 0.90,

=0 <\/§71 E (g:rin) " \/371 °8 <;’5>>

iterations suffice.




Verifying Iog( )

m/n

Cot b — < ! ) + ! | <1>
= o ——log | =
0 v0.1 & 8min v0.1 & 3
Is equivalent to
log(¢) = —Cit — blog(gmin)
So we should see a line on a log(g)/log(gmin) plot:

Impact of Gap on Single Vec Krylov
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Small Block Sizes

© Actually using block size 2 simulates all even block sizes

© Robust to pairs of overlapping singular values

Impact of Krylov Block Size
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Eigenvalue Repulsion

© New topic in Random Matrix Theory: Tiny Gaussian
Perturbations shatter eigenvalue gaps [Nguyen et al. '17]

© A+ AG has gpin > Co(ﬁ)”

© We can tradeoff convergence and accuracy with A

Impact of Random Noise on Single Vec Krylov
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Summary / Conclusion

1. Single Vector Krylov simulates all larger block sizes
2. Explains slow-then-fast convergence
3. Extensions to larger blocks, random perturbations
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